1
|
Khan T. An insight into in silico strategies used for exploration of medicinal utility and toxicology of nanomaterials. Comput Biol Chem 2025; 117:108435. [PMID: 40158237 DOI: 10.1016/j.compbiolchem.2025.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Nanomaterials (NMs) and the exploration of their comprehensive uses is an emerging research area of interest. They have improved physicochemical and biological properties and diverse functionality owing to their unique shape and size and therefore they are being explored for their enormous uses, particularly as medicinal and therapeutic agents. Nanoparticles (NPs) including metal and metal oxide-based NPs have received substantial consideration because of their biological applications. Computer-aided drug design (CADD) involving different strategies like homology modelling, molecular docking, virtual screening (VS), quantitative structure-activity relationship (QSAR) etc. and virtual screening hold significant importance in CADD used for lead identification and target identification. Despite holding importance, there are very few computational studies undertaken so far to explore their binding to the target proteins and macromolecules. Although the structural properties of nanomaterials are well documented, it is worthwhile to know how they interact with the target proteins making it a pragmatic issue for comprehension. This review discusses some important computational strategies like molecular docking and simulation, Nano-QSAR, quantum chemical calculations based on Density functional Theory (DFT) and computational nanotoxicology. Nano-QSAR modelling, based on semiempirical calculations and computational simulation can be useful for biomedical applications, whereas the DFT calculations make it possible to know about the behaviour of the material by calculations based on quantum mechanics, without the requirement of higher-order material properties. Other than the beneficial interactions, it is also important to know the hazardous consequences of engineered nanostructures and NPs can penetrate more deeply into the human body, and computational nanotoxicology has emerged as a potential strategy to predict the delirious effects of NMs. Although computational tools are helpful, yet more studies like in vitro assays are still required to get the complete picture, which is essential in the development of potent and safe drug entities.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, U.P 226026, India.
| |
Collapse
|
2
|
Sunday UE, Stephanie MI, Otuonye F, Oluwadamilola D, Lazarus AA. Computational investigation of stigmasterol as a potential therapeutic agent for cervical cancer: insights from density functional theory (DFT) and molecular docking studies. In Silico Pharmacol 2025; 13:77. [PMID: 40421096 PMCID: PMC12103424 DOI: 10.1007/s40203-025-00361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/16/2025] [Indexed: 05/28/2025] Open
Abstract
Cervical cancer an appalling disease common amongst women worldwide, caused by human papillomavirus (HPV) with 80% increasing cases in developing countries, is reported to be persistent despite the various treatment measures. Hence, this research explores the properties of stigmasterol (SML), a biological active compound derived from Costus afer plant, as a drug agent for treatment of cervical cancer via density functional theory (DFT) studies and molecular docking investigation. Here, five key proteins were selected (for 4LEO, 7X8O, 5N2F, 4P7U and 2N5R) for in silico molecular docking study with SML. The DFT at ωB97XD/6-311++G (2d, 2p) level of theory was utilized and optimization of the compound was carried out in four different solvent phases, viz; acetone, ethanol, water, and gas to ascertain the level of reactivity and stability of the compound. The HOMO-LUMO energy gaps exhibited by acetone, ethanol, gas, and water were: 9.4128 eV, 9.4134 eV, 9.3140 eV, and 9.4164 eV, respectively. Interestingly, the resulting binding affinities for SML-protein interaction for 4LEO, 7X8O, 5N2F, 4P7U and 2N5R showed notable binding affinities of - 7.6 kcal/mol, - 5.2 kcal/mol, - 6.1 kcal/mol, - 5.2 kcal/mol and - 5.0 kcal/mol, respectively, as compared to the binding affinities (- 5.2 to - 7.6 kcal/mol) recorded for proteins-standard drugs interaction. The Non-covalent interactions (NCI) analysis showed predominately, van der Waals interactions in all the phases. This investigation suggest that SML can be used in the treatment and management of cervical cancer and requires further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00361-1.
Collapse
Affiliation(s)
| | | | - Favour Otuonye
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | | | - Augusta A. Lazarus
- Department of Chemistry, Rivers State University, Port Harcourt, Nigeria
| |
Collapse
|
3
|
Stoyanova M, Milusheva M, Gledacheva V, Todorova M, Kircheva N, Angelova S, Stefanova I, Pencheva M, Vasileva B, Hristova-Panusheva K, Krasteva N, Miloshev G, Tumbarski Y, Georgieva M, Nikolova S. Silver Nanoparticles with Mebeverine in IBS Treatment: DFT Analysis, Spasmolytic, and Anti-Inflammatory Effects. Pharmaceutics 2025; 17:561. [PMID: 40430854 PMCID: PMC12115181 DOI: 10.3390/pharmaceutics17050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Mebeverine hydrochloride (MBH) is an antispasmodic agent used to regulate bowel movements and relax intestinal smooth muscle, but its application is limited by specific side effects; therefore, this study investigates the effects of previously synthesized MBH-loaded silver nanoparticles (AgNPs) on smooth muscle contractile activity and their anti-inflammatory potential as an alternative delivery system. Methods: The interactions of AgNPs with cholinergic inhibitors, selective antagonists, Ca2+ blockers, and key neurotransmitters were analyzed. In vitro, albumin denaturation suppression and ex vivo assays evaluated the anti-inflammatory effects of AgNPs-MBH, validated using a DFT in silico approach. To comprehensively assess the systemic impact and IBS treatment potential of AgNPs-MBH, we also examined in vitro their antimicrobial activity and hepatic cell responses, as the liver is a key organ in evaluating the overall safety and efficacy of nanoparticles. Additionally, the drug-release capabilities of Ag NPs were established. Results: Our findings indicate that AgNPs with MBH do not affect blocked cholinergic receptors, but their effects are more pronounced and distinct in amplitude and character than MBH. MBH-loaded AgNPs showed a lower anti-inflammatory effect than MBH but were still better than diclofenac. They also affected hepatic cell morphology and proliferation, suggesting potential for enhanced therapeutic efficacy. Drug-loaded AgNPs are considered not bactericidal. Conclusions: Based on our results, drug-loaded AgNPs might be a promising medication delivery system for MBH and a useful treatment option for IBS. Future in vivo and preclinical experiments will contribute to the establishment of drug-loaded AgNPs in IBS treatment.
Collapse
Affiliation(s)
- Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
- University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (G.M.); (M.G.)
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.H.-P.); (N.K.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.H.-P.); (N.K.)
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (G.M.); (M.G.)
| | - Yulian Tumbarski
- Department of Microbiology and Biotechnology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (G.M.); (M.G.)
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); or (M.M.); (M.T.)
| |
Collapse
|
4
|
Ohiduzzaman M, Khan M, Khan K, Paul B, Zilani MNH, Nazmul Hasan M. Crystallographic structure, antibacterial effect, and catalytic activities of fig extract mediated silver nanoparticles. Heliyon 2024; 10:e32419. [PMID: 38961897 PMCID: PMC11219361 DOI: 10.1016/j.heliyon.2024.e32419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Silver nanoparticles (Ag NPs) play a pivotal role in the current research landscape due to their extensive applications in engineering, biotechnology, and industry. The aim is to use fig (Ficus hispida Linn. f.) extract (FE) for eco-friendly Ag NPs synthesis, followed by detailed characterization, antibacterial testing, and investigation of bioelectricity generation. This study focuses on the crystallographic features and nanostructures of Ag NPs synthesized from FE. Locally sourced fig was boiled in deionized water, cooled, and doubly filtered. A color change in 45 mL 0.005 M AgNO3 and 5 mL FE after 40 min confirmed the bio-reduction of silver ions to Ag NPs. Acting as a reducing and capping agent, the fig extract ensures a green and sustainable process. Various analyses, including UV-vis absorption spectrophotometry (UV), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and Transmission electron microscopy (TEM) were employed to characterize the synthesized nanoparticles, and Gas chromatography-mass spectrometry (GC-MS) analysis of the fig extract revealed the presence of eleven chemicals. Notably, the Ag NPs exhibited a surface plasmon resonance (SPR) band at 418 nm, confirmed by UV analysis, while FTIR and XRD results highlighted the presence of active functional groups in FE and the crystalline nature of Ag NPs respectively. With an average particle size of 44.57 nm determined by FESEM and a crystalline size of 35.87 nm determined by XRD, the nanoparticles showed strong antibacterial activities against Staphylococcus epidermidis and Escherichia coli. Most importantly, fig fruit extract has been used as the bio-electrolyte solution to generate electricity for the first time in this report. The findings of this report can be the headway of nano-biotechnology in medicinal and device applications.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Department of Physics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M.N.I. Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K.A. Khan
- Department of Physics, Jagannath University, Dhaka, 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
5
|
Sidorowicz A, Szymański T, Rybka JD. Photodegradation of Biohazardous Dye Brilliant Blue R Using Organometallic Silver Nanoparticles Synthesized through a Green Chemistry Method. BIOLOGY 2021; 10:biology10080784. [PMID: 34440016 PMCID: PMC8389564 DOI: 10.3390/biology10080784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary In the paper, we utilize silver nanoparticles as a catalyst in the degradation of a hazardous dye. The nanoparticles are formed from the simple silver salt by using only a plant extract from a commonly occurring herb. The plant extract contains compounds that can both reduce the silver salt and subsequently cap the surface of the as-prepared particles. There are many environmental advantages to using such an approach—nanoparticles are prepared by using simple green chemistry and the catalytic degradation of dye is carried out by sunlight energy. Such a method can be used as a very cheap, green method to neutralize hazardous substances in-house. Abstract Nowadays, nanostructures having tremendous chemical and physical properties are gaining attention in the biomedical industry. However, when they are prepared through classical methods (physical and chemical), they are often non-biocompatible and toxic. Considering the mentioned factors, in this research, organometallic silver nanostructures (OMAgNs) have been prepared by the green chemistry method using the acetone, methanol, and methanol-hexane-based extracts of the medicinally important plant Cichorium intybus. Secondary metabolites from C. intybus can be used as an alternative to synthetic reagents at an industrial scale to manufacture biosafe and economical nanostructures with enhanced physicochemical parameters. Prepared nanostructures were characterized using SEM, XRD, FTIR, TGA, UV, and zeta potential measurement. SEM analysis revealed different shapes of OMAgNs, prepared with various extracts. XRD analysis showed the crystallinity of the nanostructures. FTIR spectroscopy helped to identify groups of compounds present in the extracts and used for the OMAgNs synthesis. Out of the three tested OMAgNs, those prepared with methanol extract were selected due to the highest obtained yield and stability (highest negative zeta potential) and were tested as a cost-efficient and active agent to photodegrade organic pollutant, Brilliant Blue R, using energy from sunlight. A decrease in UV-VIS absorbance confirmed the rapid degradation of the dye.
Collapse
Affiliation(s)
- Agnieszka Sidorowicz
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (A.S.); (T.S.)
- Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6 Street, 61-614 Poznan, Poland
| | - Tomasz Szymański
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (A.S.); (T.S.)
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (A.S.); (T.S.)
- Correspondence: ; Tel.: +48-61-829-1875
| |
Collapse
|
6
|
Aiswariya KS, Jose V. Photo-Mediated Facile Synthesis of Silver Nanoparticles Using Curcuma zanthorrhiza Rhizome Extract and Their In Vitro Antimicrobial and Anticancer Activity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01951-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Cuesta SA, Mora JR, Márquez EA. In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2. Molecules 2021; 26:1100. [PMID: 33669720 PMCID: PMC7923184 DOI: 10.3390/molecules26041100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC50 values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R2 = 0.897, Q2LOO = 0.854, and Q2ext = 0.876 and complying with all the parameters established in the validation Tropsha's test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC50 value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC50 values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.
Collapse
Affiliation(s)
- Sebastián A. Cuesta
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Colegio Politécnico, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Colegio Politécnico, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
| | - Edgar A. Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| |
Collapse
|
8
|
Modelling the Anti-Methicillin-Resistant Staphylococcus Aureus (MRSA) Activity of Cannabinoids: A QSAR and Docking Study. CRYSTALS 2020. [DOI: 10.3390/cryst10080692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Twenty-four cannabinoids active against MRSA SA1199B and XU212 were optimized at WB97XD/6-31G(d,p), and several molecular descriptors were obtained. Using a multiple linear regression method, several mathematical models with statistical significance were obtained. The robustness of the models was validated, employing the leave-one-out cross-validation and Y-scrambling methods. The entire data set was docked against penicillin-binding protein, iso-tyrosyl tRNA synthetase, and DNA gyrase. The most active cannabinoids had high affinity to penicillin-binding protein (PBP), whereas the least active compounds had low affinities for all of the targets. Among the cannabinoid compounds, Cannabinoid 2 was highlighted due to its suitable combination of both antimicrobial activity and higher scoring values against the selected target; therefore, its docking performance was compared to that of oxacillin, a commercial PBP inhibitor. The 2D figures reveal that both compounds hit the protein in the active site with a similar type of molecular interaction, where the hydroxyl groups in the aromatic ring of cannabinoids play a pivotal role in the biological activity. These results provide some evidence that the anti-Staphylococcus aureus activity of these cannabinoids may be related to the inhibition of the PBP protein; besides, the robustness of the models along with the docking and Quantitative Structure–Activity Relationship (QSAR) results allow the proposal of three new compounds; the predicted activity combined with the scoring values against PBP should encourage future synthesis and experimental testing.
Collapse
|
9
|
Sathiyaraj S, Suriyakala G, Gandhi AD, Saranya S, Santhoshkumar M, Kavitha P, Babujanarthanam R. Green Biosynthesis of Silver Nanoparticles Using Vallarai Chooranam and Their Potential Biomedical Applications. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01683-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Fernandes M, Lopes I, Teixeira J, Botelho C, Gomes AC. Exosome-like Nanoparticles: A New Type of Nanocarrier. Curr Med Chem 2020; 27:3888-3905. [PMID: 30706777 DOI: 10.2174/0929867326666190129142604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles are one of the most commonly used systems for imaging or therapeutic drug delivery. Exosomes are nanovesicular carriers that transport cargo for intercellular communication. These nanovesicles are linked to the pathology of some major diseases, in some cases with a central role in their progression. The use of these carriers to transport therapeutic drugs is a recent and promising approach to treat diseases such as cancer and Alzheimer disease. The physiological production of these structures is limited impairing its collection and subsequent purification. These drawbacks inspired the search for mimetic alternatives. The collection of exosome-like nanoparticles from plants can be a good alternative, since they are easier to extract and do not have the drawbacks of those produced in animal cells. Both natural and synthetic exosome-like nanoparticles, produced from serial extrusion of cells or by bottom up synthesis, are currently some of the most promising, biocompatible, high efficiency systems for drug delivery.
Collapse
Affiliation(s)
- Mário Fernandes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José Teixeira
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Sattari R, Khayati GR, Hoshyar R. Biosynthesis of Silver–Silver Chloride Nanoparticles Using Fruit Extract of Levisticum Officinale: Characterization and Anticancer Activity Against MDA-MB-468 Cell Lines. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01818-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Cladophora fascicularis Mediated Silver Nanoparticles: Assessment of Their Antibacterial Activity Against Aeromonas hydrophila. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01674-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Vinay SP, Udayabhanu, Nagaraju G, Chandrappa CP, Chandrasekhar N. Rauvolfia tetraphylla (Devil Pepper)-Mediated Green Synthesis of Ag Nanoparticles: Applications to Anticancer, Antioxidant and Antimitotic. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01598-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|