1
|
Pandey G, Serawat S, Awasthi K. Synergistic Effects of ZnO@NiM'-Layered Double Hydroxide (M' = Mn, Co, and Fe) Composites on Supercapacitor Performance: A Comparative Evaluation. ACS NANOSCIENCE AU 2024; 4:399-408. [PMID: 39713728 PMCID: PMC11659899 DOI: 10.1021/acsnanoscienceau.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 12/24/2024]
Abstract
The development of supercapacitors is pivotal for sustainable energy storage solutions, necessitating the advancement of innovative electrode materials to supplant fossil-fuel-based energy sources. Zinc oxide (ZnO) is widely studied for use in supercapacitor electrodes because of its beneficial physicochemical properties, including excellent chemical and thermal stability, semiconducting characteristics, low cost, and environmentally friendly nature. In this study, ZnO nanorods were synthesized using a simple hydrothermal method and then combined with various Ni-based layered double hydroxides (LDHs) [NiM'-LDHs (M' = Mn, Co, and Fe)] to improve the electrochemical performance of the ZnO nanorods. These LDHs are well-known for their outstanding electrochemical and electronic properties, high specific capacitance, and efficient dispersion of cations within host nanolayers. The synthesized composites ZnO@NiMn-LDH, ZnO@NiCo-LDH, and ZnO@NiFe-LDH exhibit enhanced specific capacitances of 569.3, 284.6, and 133.0 F/g, respectively, at a current rate of 1 A/g, outperforming bare ZnO (98.4 F/g). Notably, ZnO@NiMn-LDH demonstrates superior electrochemical performance along with a capacitance retention of 76%, compared to ZnO@NiCo-LDH (58%), ZnO@NiFe-LDH (49%), and bare ZnO (23%) over 5000 cycles. Furthermore, an asymmetric supercapacitor (ASC) was developed by using ZnO@NiMn-LDH as the positive electrode and activated carbon (AC) as the negative electrode to assess its practical applicability. The fabricated ASC (ZnO@NiMn-LDH//AC) demonstrated a specific capacitance of 45.22 F/g at a current rate of 1 A/g, an energy density of 16.08 W h/kg at a power density of 798.8 W/kg, and a capacitance retention of 75% over 5000 cycles. These findings underscore the potential of the composite formation of ZnO with Ni-based LDHs in advancing the efficiency and durability of supercapacitors.
Collapse
Affiliation(s)
| | | | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| |
Collapse
|
2
|
Khand NH, Solangi AR, Shaikh H, Shah ZUH, Bhagat S, Sherazi STH, López-Maldonado EA. Novel electrochemical ZnO/MnO 2/rGO nanocomposite-based catalyst for simultaneous determination of hydroquinone and pyrocatechol. Mikrochim Acta 2024; 191:342. [PMID: 38795174 DOI: 10.1007/s00604-024-06416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
An innovative electrochemical sensing method is introduced for dihydroxy benzene (DHB) isomers, specifically hydroquinone (HQ) and pyrocatechol (PCC), employing a zinc-oxide/manganese-oxide/reduced-graphene-oxide (ZnO/MnO2/rGO) nanocomposite (NC) as an electrode modifier material. Comprehensive characterization confirmed well-dispersed ZnO/MnO2 nanoparticles on rGO sheets. Electrochemical analysis revealed the ZnO/MnO2/rGO-NC-based modified electrode possesses low electrical resistance (126.2 Ω), high electrocatalytic activity, and rapid electron transport, attributed to the synergies between ZnO, MnO2 and rGO. The modified electrode demonstrated exceptional electrochemical performance in terms of selectivity for the simultaneous detection of HQ and PCC. Differential pulse voltammetry studies validated the proposed sensor's ability to detect HQ and PCC within linear response ranges of 0.01-115 μM and 0.03-60.53 μM, with detection limits of 0.0055 µM and 0.0053 µM, respectively. Practical validation using diverse water samples showcased excellent percent recovery of HQ and PCC using the ZnO/MnO2/rGO-based electrochemical sensor, underscoring the sensor's potential for real-world applications in environmental monitoring.
Collapse
Affiliation(s)
- Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Sanoober Bhagat
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Syed Tufail H Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, 22390, Tijuana, Baja California, CA, CP, Mexico
| |
Collapse
|
3
|
Potbhare AK, Aziz SKT, Ayyub MM, Kahate A, Madankar R, Wankar S, Dutta A, Abdala A, Mohmood SH, Adhikari R, Chaudhary RG. Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review. NANOSCALE ADVANCES 2024; 6:2539-2568. [PMID: 38752147 PMCID: PMC11093270 DOI: 10.1039/d3na01071f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide via exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems. The kinetics of photocatalysis and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) for the optimization of the degradation efficiency of organic dyes, phenol compounds, antibiotics, and pharmaceutical drugs are discussed. Further, we present a brief introduction on different graphene-based metal oxides and a systematic survey of the recently published research literature on electrode materials for lithium-ion batteries (LIBs), supercapacitors, and fuel cells. Subsequently, the power density, stability, pseudocapacitance charge/discharge process, capacity and electrochemical reaction mechanisms of intercalation, and conversion- and alloying-type anode materials are summarized in detail. Furthermore, we thoroughly distinguish the intrinsic differences among underpotential deposition, intercalation, and conventional pseudocapacitance of electrode materials. This review offers a meaningful reference for the construction and fabrication of graphene-based metal oxides as effective photocatalysts for photodegradation study and high-performance optimization of anode materials for LIBs, supercapacitors, and fuel cells.
Collapse
Affiliation(s)
- Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - S K Tarik Aziz
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Mohd Monis Ayyub
- New Chemistry Unit, International Centre for Materials Science and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Aniket Kahate
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Rohit Madankar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Sneha Wankar
- Post Graduate Teaching Department of Chemistry, Gondwana University Gadchiroli 442605 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar POB 23784 Doha Qatar
| | - Sami H Mohmood
- Department of Physics, The University of Jordan Amman 11942 Jordan
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| |
Collapse
|
4
|
Razaq H, Mehwish N, Xia J, Feng C. NDI based C2-symmetric Chiral Supramolecular Hydrogels Towards Enhanced Conductivity. Chemistry 2024; 30:e202302912. [PMID: 38010920 DOI: 10.1002/chem.202302912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
To comprehend the significance of improved conductive properties in C2-symmetric hydrogels, it is vital to investigate how non-gelating achiral functional group isomers influence the conductivity of such supramolecular hydrogels, whereas understanding the major driving forces behind this regulatory process is first and foremost. Herein, we report a hydrogel system containing tryptophan-conjugated NDI as the backbone (L/D-NTrp), enabling effective supramolecular assembly with the bipyridyl functional group isomers. This co-assembly behavior results in materials with exceptional mechanical properties and high conductivities, surpassing most previously reported C2-symmetrical hydrogels, as well as the ability to form controlled morphologies. Notably, the co-hydrogels displayed an eight-fold increase in mechanical strength, making them more robust and resistant to deformation compared to the original gel. Additionally, all hydrogels exhibited favorable electrical conductivity, with the co-assembled hydrogels showcasing notable performance, making them a promising candidate for use in electronic devices and sensors. This report lays the foundation for further investigation into the properties and potential applications of L/D-NTrp compound in the range of fields, including drug delivery, tissue engineering, and electronics.
Collapse
Affiliation(s)
- Hamaela Razaq
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Nabila Mehwish
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Jingyi Xia
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiaotong University, Dongchuan Rd 800, 200240, Shanghai, China
| |
Collapse
|
5
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Rahman MM. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. CHEM REC 2024; 24:e202300106. [PMID: 37249417 DOI: 10.1002/tcr.202300106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
6
|
Lan PL, Ni IC, Wu CI, Hsu CC, Cheng IC, Chen JZ. Ultrafast Fabrication of H 2SO 4, LiCl, and Li 2SO 4 Gel Electrolyte Supercapacitors with Reduced Graphene Oxide (rGO)-LiMnO x Electrodes Processed Using Atmospheric-Pressure Plasma Jet. MICROMACHINES 2023; 14:1701. [PMID: 37763864 PMCID: PMC10535643 DOI: 10.3390/mi14091701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Pastes containing reduced graphene oxide (rGO) and LiCl-Mn(NO3)2·4H2O are screen-printed on a carbon cloth substrate and then calcined using a nitrogen atmospheric-pressure plasma jet (APPJ) for conversion into rGO-LiMnOx nanocomposites. The APPJ processing time is within 300 s. RGO-LiMnOx on carbon cloth is used to sandwich H2SO4, LiCl, or Li2SO4 gel electrolytes to form hybrid supercapacitors (HSCs). The areal capacitance, energy density, and cycling stability of the HSCs are evaluated using electrochemical measurement. The HSC utilizing the Li2SO4 gel electrolyte exhibits enhanced electrode-electrolyte interface reactions and increased effective surface area due to its high pseudocapacitance (PC) ratio and lithium ion migration rate. As a result, it demonstrates the highest areal capacitance and energy density. The coupling of charges generated by embedded lithium ions with the electric double-layer capacitance (EDLC) further contributed to the significant overall capacitance enhancement. Conversely, the HSC with the H2SO4 gel electrolyte exhibits better cycling stability. Our findings shed light on the interplay between gel electrolytes and electrode materials, offering insights into the design and optimization of high-performance HSCs.
Collapse
Affiliation(s)
- Pei-Ling Lan
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan;
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
| | - I-Chih Ni
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, Taiwan; (I.-C.N.); (C.-I.W.); (I.-C.C.)
| | - Chih-I Wu
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, Taiwan; (I.-C.N.); (C.-I.W.); (I.-C.C.)
- Graduate School of Advanced Technology, National Taiwan University, Taipei City 10617, Taiwan
| | - Cheng-Che Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei City 10617, Taiwan;
| | - I-Chun Cheng
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, Taiwan; (I.-C.N.); (C.-I.W.); (I.-C.C.)
| | - Jian-Zhang Chen
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan;
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
7
|
Lefdhil C, Polat S, Zengin H. Synthesis of Zinc Oxide Nanorods from Zinc Borate Precursor and Characterization of Supercapacitor Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2423. [PMID: 37686931 PMCID: PMC10490104 DOI: 10.3390/nano13172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
The synthesis of zinc oxide (ZnO) was accomplished from zinc borate (Zn3B2O6) minerals to be used as electrodes in supercapacitor applications. The concentrations of obtained zinc (Zn) metal after treatment with hydrochloric acid (HCl) were determined by atomic absorption spectroscopy (AAS). Direct synthesis of ZnO on a nickel (Ni) foam surface was conducted by employing the hydrothermal technique using a solution with the highest Zn content. The results showed the successful synthesis of ZnO nanorods on the surface of Ni foam with an average wall size of approximately 358 nm. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements revealed that the synthesized electrode exhibited battery-type charge storage characteristics, reaching a maximum specific capacitance of approximately 867 mF·cm-² at a current density of 2 mA·cm-². Additionally, the energy and power densities of the electrode at a current density of 2 mA·cm-² were calculated as 19.3 mWh·cm-² and 200 mW·cm-², respectively. These results exhibited promising performance of the single-component electrode, outperforming the existing counterparts reported in the literature.
Collapse
Affiliation(s)
- Chikh Lefdhil
- Material Research and Development Centre, Karabuk University, 78050 Karabük, Turkey
- Nano Energy Laboratory, Karabuk University, 78050 Karabük, Turkey
- Metallurgy and Materials Engineering, Karabuk University, 78050 Karabük, Turkey
| | - Safa Polat
- Material Research and Development Centre, Karabuk University, 78050 Karabük, Turkey
- Nano Energy Laboratory, Karabuk University, 78050 Karabük, Turkey
- Metallurgy and Materials Engineering, Karabuk University, 78050 Karabük, Turkey
| | - Hüseyin Zengin
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University, 4040 Linz, Austria
| |
Collapse
|
8
|
Bandas C, Nicolaescu M, Popescu MI, Orha C, Căprărescu S, Lazau C. One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4536. [PMID: 37444850 DOI: 10.3390/ma16134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Zn-ZnO(Nw)-rGO hybrid electrodes for supercapacitor applications were successfully prepared in situ by a one-step microwave-assisted hydrothermal method by deposition of reduced graphene oxide (rGO) on the structure of ZnO nanowires grown on the Zn foil. During the hydrothermal treatment, two processes occur the reduction of graphene oxide (GO) and the deposition of rGO on the Zn-ZnO(Nw) support. The growth of ZnO nanowires was achieved by thermal oxidation below the melting point of the Zn foil in a controlled atmosphere. The as-obtained electrodes were assessed for structural, optical, and morphological properties by X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, SEM microscopy, and EDX analysis. The supercapacitor properties of the Zn-ZnO(Nw)-rGO hybrid electrodes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge analysis. The CV curve reveals that the Zn-ZnO(Nw)-rGO hybrid structures work as negative electrodes and exhibit a non-ideal rectangle-like shape, suggesting that the as-synthesized structure behaves as a pseudo-capacitor. A maximum capacitance was determined to be 395.79 mF cm-2 at a scan rate of 5 mV s-1. Based on GCD analysis, the maximum specific capacitance of 145.59 mF cm-2 was achieved at a low power density of 2 mA cm-2. The cycle life assessment of the Zn-ZnO(Nw)-rGO hybrid electrode over a 250-cycle number was performed by CV and GCD analysis. The maximum retention rate of 120.86% was achieved from GCD analysis over 250 cycles for the Zn-ZnO(Nw)-rGO hybrid electrode.
Collapse
Affiliation(s)
- Cornelia Bandas
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu Street, 300254 Timisoara, Romania
| | - Mircea Nicolaescu
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu Street, 300254 Timisoara, Romania
- Department of Materials and Manufacturing Engineering, Faculty of Mechanical Engineering, Politehnica University of Timisoara Mihai Viteazu 1, 300222 Timisoara, Romania
| | - Mina Ionela Popescu
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu Street, 300254 Timisoara, Romania
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, Blv. Vasile Parvan 6, 300223 Timisoara, Romania
| | - Corina Orha
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu Street, 300254 Timisoara, Romania
| | - Simona Căprărescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, Polizu Street No. 1-7, 011061 Bucharest, Romania
| | - Carmen Lazau
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu Street, 300254 Timisoara, Romania
| |
Collapse
|
9
|
Shaheen I, Hussain I, Zahra T, Memon R, Alothman AA, Ouladsmane M, Qureshi A, Niazi JH. Electrophoretic Fabrication of ZnO/CuO and ZnO/CuO/rGO Heterostructures-based Thin Films as Environmental Benign Flexible Electrode for Supercapacitor. CHEMOSPHERE 2023; 322:138149. [PMID: 36804630 DOI: 10.1016/j.chemosphere.2023.138149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Sustainable fabrication of flexible hybrid supercapacitor electrodes is extensively investigated during the current era to solve global energy problems. Herein, we used a cost-effective and efficient electrophoretic deposition (EPD) approach to fabricate a hybrid supercapacitor electrode. ZnO/CuO and ZnO/CuO/rGO heterostructure were prepared by sol-gel synthesis route and were electrophoretically deposited on indium tin oxide (ITO) substrate as a thin uniform layer using 1 V for 20 min at 50 mV/s. ZnO/CuO and ZnO/CuO/rGO heterostructure coated ITOs were then employed as the working electrode in a three-electrode setup for supercapacitor measurements. The fabricated electrodes have been investigated by Galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) to study their charge storage properties. ZnO/CuO revealed a specific capacitance of 1945 F g-1 at 2 mV/s and 999 F g-1 at 5 A g-1. However, an increased specific capacitance of 2305 F g-1 was measured for ZnO/CuO/rGO heterostructure at 2 mV/s and 1235 F g-1 at 5 A g-1. The lower internal resistance was observed for ZnO/CuO/rGO heterostructure, indicating good conductivity of the electrode material. Thus, the overall results of the current study suggest that EPD-assisted ZnO/CuO/rGO heterostructure hybrid electrode possess a substantial potential for energy storage as a supercapacitor.
Collapse
Affiliation(s)
- Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Taghazal Zahra
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| |
Collapse
|
10
|
Photodegradation of Ciprofloxacin and Levofloxacin by Au@ZnONPs-MoS2-rGO Nanocomposites. Catalysts 2023. [DOI: 10.3390/catal13030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
This study aimed to investigate the photocatalytic performance of diverse zinc oxide catalysts containing gold nanoparticles (AuNPs), molybdenum disulfide (MoS2), and reduced graphene oxide (rGO) toward the degradation of the antibiotics levofloxacin (LFX) and ciprofloxacin (CFX) in aqueous solutions. The obtained results demonstrate that LFX is more resistant to degradation when compared with CFX and that the principal route of degradation under visible light is the formation of hydroxyl radicals. Photoluminescence (PL) measurements were employed to verify the inhibitory effect of electron–hole recombination when AuNPs, MoS2, and rGO are integrated into a semiconductor. The catalyst that achieved the highest percentage of CFX degradation was 1%Au@ZnONPs-3%MoS2-1%rGO, exhibiting a degradation efficiency of 96%, while the catalyst that exhibited the highest percentage of LFX degradation was 5%Au@ZnONPs-3%MoS2-1%rGO, displaying a degradation efficiency of 99.8%. A gas chromatography–mass spectrometry (GC-MS) analysis enabled the identification of reaction intermediates, facilitating the determination of a potential degradation pathway for both antibiotics. Additionally, recyclability assessments showed that the synthesized catalysts maintained stable photocatalytic efficiencies after 15 cycles, indicating that the heterostructures have the potential for further usage and may be tested with other organic contaminants as well.
Collapse
|
11
|
Arumugam C, Kandasamy SK, Subramaniam TK. Enhancing Supercapacitor Performance Using ZnO Embedded on GO/PPy Composite as Versatile Electrodes. HIGH ENERGY CHEMISTRY 2023. [DOI: 10.1134/s0018143923010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Mendoza‐Mendoza E, España‐Sánchez BL, Montes‐Luna ADJ, Castruita‐de León G. Effect of poly(ether block amide)‐graphene/
ZnO
membranes in mixed gas separation performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.53453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esmeralda Mendoza‐Mendoza
- CONACYT ‐ Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas y Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB) Universidad Autónoma de San Luis Potosí San Luis Potosí Mexico
| | - Beatriz Liliana España‐Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ S. C., Parque Tecnológico Querétaro Querétaro Mexico
| | - Angel de Jesús Montes‐Luna
- Centro de Investigación Científica de Yucatán A. C. (CICY), Laboratorio de Membranas, Unidad de Materiales Mérida Mexico
| | | |
Collapse
|
13
|
Chandrakala K, Giddaerappa, Venugopala Reddy K, Shivaprasad K. Investigational undertaking descriptors for reduced graphene oxide-phthalocyanine composite based catalyst for electrochemical oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Di Mari GM, Mineo G, Franzò G, Mirabella S, Bruno E, Strano V. Low-Cost, High-Yield ZnO Nanostars Synthesis for Pseudocapacitor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2588. [PMID: 35957021 PMCID: PMC9370347 DOI: 10.3390/nano12152588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022]
Abstract
Energy storage devices based on earth-abundant materials are key steps towards portable and sustainable technologies used in daily life. Pseudocapacitive devices, combining high power and high energy density features, are widely required, and transition metal oxides represent promising building materials owing to their excellent stability, abundance, and ease of synthesis. Here, we report an original ZnO-based nanostructure, named nanostars (NSs), obtained at high yields by chemical bath deposition (CBD) and applied as pseudocapacitors. The ZnO NSs appeared as bundles of crystalline ZnO nanostrips (30 nm thin and up to 12 µm long) with a six-point star shape, self-assembled onto a plane. X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence spectroscopy (PL) were used to confirm the crystal structure, shape, and defect-mediated radiation. The ZnO NSs, dispersed onto graphene paper, were tested for energy storage by cyclic voltammetry (CV) and galvanostatic charge−discharge (GCD) analyses, showing a clear pseudocapacitor behavior. The energy storage mechanism was analyzed and related to oxygen vacancy defects at the surface. A proper evaluation of the charge stored on the ZnO NSs and the substrate allowed us to investigate the storage efficiency, measuring a maximum specific capacitance of 94 F g−1 due to ZnO nanostars alone, with a marked diffusion-limited behavior. The obtained results demonstrate the promising efficacy of ZnO-based NSs as sustainable materials for pseudocapacitors.
Collapse
Affiliation(s)
- Gisella Maria Di Mari
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (G.M.); (E.B.)
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.F.); (V.S.)
| | - Giacometta Mineo
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (G.M.); (E.B.)
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.F.); (V.S.)
| | - Giorgia Franzò
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.F.); (V.S.)
| | - Salvatore Mirabella
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (G.M.); (E.B.)
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.F.); (V.S.)
| | - Elena Bruno
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.M.D.M.); (G.M.); (E.B.)
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.F.); (V.S.)
| | - Vincenzina Strano
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e i Microsistemi (CNR-IMM), Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy; (G.F.); (V.S.)
| |
Collapse
|
15
|
Arumugasamy SK, Ramakrishnan S, Yoo DJ, Govindaraju S, Yun K. Tuning the interfacial electronic transitions of bi-dimensional nanocomposites (pGO/ZnO) towards photocatalytic degradation and energy application. ENVIRONMENTAL RESEARCH 2022; 204:112050. [PMID: 34516981 DOI: 10.1016/j.envres.2021.112050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The two-dimensional carbonaceous nanocomposites tend to have extreme capacitance and catalysis activity because of their surface tunability of oxygenated moieties aiding in photocatalytic degradation. Herewith, we performed microwave-assisted alkaline treatment of graphene oxide sheets to attain defective sites on the graphitic surface by altering microwave parameters. The synergism of zinc oxide (ZnO) on the graphitic surface impacts electronic transitions paving paths for vacant oxygen sites to promote photocatalytic degradation and catalytic activity. The photocatalytic efficiency of the synthesized material for the degradation of rhodamine B (RhB) because of its susceptibility in industrial effluents, and the degradation rate was estimated to be around 87.5% within a short span of 30 min by utilizing UV irradiation. Concomitantly, the pGO/ZnO coated substrate exhibits a specific capacity of 561.7 mAh/g and incredible coulombic efficiency illustrating pseudocapacitive nature. Furthermore, on subjecting the composite modified electrode to oxygen evolution catalysis due to the vacant sites located at the lattice edges attributing to the d-d coulombic interaction within the local electron clouds possessing a low overpotential of 205 mV with a Tafel slope of 84 mV/dec. This modest approach boosts an eco-friendly composite to develop photocatalytic degradability and bifunctional catalytic activity for futuristic necessity.
Collapse
Affiliation(s)
| | - Shanmugam Ramakrishnan
- Deparment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of life science, R&D Education Center for Whole Life Cycle, R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea; Deparment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si, 13120, Republic of Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
16
|
Green synthesis of RGO-ZnO mediated Ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Preparation of SiNWs/rGO/CuO Nanocomposites as Effective Photocatalyst for Degradation of Ciprofloxacin Assisted with Peroxymonosulfate. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02184-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Letsoalo M, Ambushe AA, Mamo MA. Novel Chemoresistive Sensor for Sensitive Detection of Pb 2+ Ions Using an Interdigital Gold Electrode Fabricated with a Reduced Graphene Oxide-Based Ion-Imprinted Polymer. ACS OMEGA 2021; 6:31528-31538. [PMID: 34869979 PMCID: PMC8637608 DOI: 10.1021/acsomega.1c03955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
This study presents novel chemoresistive reduced graphene oxide-ion-imprinted polymer (IIP-rGO)-based sensors for detection of lead (Pb2+) ions. The ion-imprinted polymer was synthesized by bulk polymerization and modified with a variable amount of rGO incorporated to form an IIP-rGO composite. The amount of rGO in the polymer matrix affected the sensor's relative response, and 1:3 mass ratio produced excellent results, with a consistent trend as the concentration of Pb2+ ions increased in the solution. The decrease in relative resistance (ΔR/R o) followed an exponential decay relationship between the ΔR/R o response and the concentration of Pb2+ ions in aqueous solutions. After solving the exponential decay function, it is observed that the sensor has the upper limit of ΔR/R o >1.7287 μg L-1, and the limit of detection of the sensor is 1.77 μg L-1. A nonimprinted polymer (NIP)-based sensor responded with a low relative resistance of the same magnitude although the concentration was varied. The response ratio of the IIP-based sensor to the NIP-based sensor (ΔR/R o)IIP/(ΔR/R o)NIP as a function of the concentration of Pb2+ ions in the solution shows that the response ratios recorded a maximum of around 22 at 50 μg L-1 and then decreased as the concentration increased, following an exponential decay function with the minimum ratio of 2.09 at 200 μg L-1 but never read 1. The sensor showed excellent selectivity against the bivalent cations Mn2+, Fe2+, Sn2+, and Ti2+. The sensor was capable of exhibiting 90% ΔR/R o response repeatability in a consecutive test.
Collapse
Affiliation(s)
- Mokgehle
R. Letsoalo
- Department
of Chemical Sciences, Faculty of Science, University of Johannesburg, Auckland Park Campus, P. O. Box
17011, Johannesburg 2028, South Africa
| | - Abayneh A. Ambushe
- Department
of Chemical Sciences, Faculty of Science, University of Johannesburg, Auckland Park Campus, P. O. Box
17011, Johannesburg 2028, South Africa
| | - Messai A. Mamo
- Department
of Chemical Science, Faculty of Science, University of Johannesburg, Doornfontein Campus, P. O. Box
17011, Johannesburg 2028, South Africa
| |
Collapse
|
19
|
Saranya J, Sreeja BS, Arivanandan M, Bhuvaneswari K, Sherin S, Shivani KS, SaradhaPreetha G, Saroja KK. Nanoarchitectonics of Cerium Oxide/Zinc Oxide/Graphene Oxide Composites for Evaluation of Cytotoxicity and Apoptotic Behavior in HeLa and VERO Cell Lines. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02128-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Luo Y, Zhai F, Zhang Y, Chen Z, Ding M, Qin D, Yang J, Feng G, Li L. A superfine glass fibre air filter with rapid response to photocatalytic antibacterial properties under visible light by loading rGO/ZnO. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202285. [PMID: 34457329 PMCID: PMC8371377 DOI: 10.1098/rsos.202285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 05/14/2023]
Abstract
The development of high-performance air filter has become more and more important to public health. However, it has always been very challenging for developing a multifunctional air filter to simultaneously achieve excellent filtration and antibacterial properties. Herein, a versatile air filter was prepared with loading the reduced graphene (rGO) and zinc oxide on the superfine glass fibre (s-GF) with the three-dimensional network structure by in situ sol-gel process followed by calcination, which aims to achieve synergistic high-efficiency air filtration and rapid response to photocatalytic antibacterial properties under visible light. The air filter showed a three-dimensional network structure based on a rGO/ZnO/s-GF multilayer and exhibited the highest catalytic performance by achieving a 95% degradation effect on rhodamine B within 2 h and achieving 100% antibacterial inactivation of the Escherichia coli and Staphylococcus aureus within 4 h under visible light when the weight ratio of rGO in rGO/ZnO is 1.6%. The air filtration efficiency can also be maintained at 99% after loading ZnO and rGO photocatalytic particles. The spectrum of the photoluminescence (PL), UV-Vis diffuse reflectance spectra (DRS) and electron spin resonance (ESR) indicate that the combination of rGO and ZnO on the s-GF can increase the separation of photogenerated carriers and the specific surface area of the air filter, thereby increasing the photocatalytic response and antibacterial properties of the s-GF air filter under visible light in a short time.
Collapse
Affiliation(s)
- Yongyi Luo
- School of Materials and Energy, Southwest University, Chongqing 402160, People's Republic of China
| | - Fuqiang Zhai
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Yingchun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 402160, People's Republic of China
| | - Zhiqian Chen
- School of Materials and Energy, Southwest University, Chongqing 402160, People's Republic of China
| | - Mingde Ding
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Dajiang Qin
- Chongqing Zisun Technology Co., Ltd., Chongqing 401120, People's Republic of China
| | - Jinming Yang
- Chongqing Zisun Technology Co., Ltd., Chongqing 401120, People's Republic of China
| | - Guang Feng
- Engineering Research Center of Optical Instrument and System, Chongqing Institute of East China Normal University, Chongqing 401120, People's Republic of China
| | - Lu Li
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| |
Collapse
|
21
|
Study of highly porous ZnO nanospheres embedded reduced graphene oxide for high performance supercapacitor application. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Pogacean F, Ştefan M, Toloman D, Popa A, Leostean C, Turza A, Coros M, Pana O, Pruneanu S. Photocatalytic and Electrocatalytic Properties of NGr-ZnO Hybrid Materials. NANOMATERIALS 2020; 10:nano10081473. [PMID: 32727153 PMCID: PMC7466554 DOI: 10.3390/nano10081473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
N-doped graphene-ZnO hybrid materials with different N-doped graphene:ZnO wt% ratios (1:10; 1:20; 1:30) were prepared by a simple and inexpensive sol-gel method. The materials denoted NGr-ZnO-1 (1:10), NGr-ZnO-2 (1:20), and NGr-ZnO-3 (1:30) were investigated with advanced techniques and their morpho-structural, photocatalytic, and electrocatalytic properties were reported. Hence, pure N-doped graphene sample contains flakes with the size ranging from hundreds of nanometers to micrometers. In the case of all NGr-ZnO hybrid materials, the flakes appear heavily decorated with ZnO nanoparticles, having a cauliflower-like morphology. The X-ray powder diffraction (XRD) investigation of N-doped graphene sample revealed that it was formed by a mixture of graphene oxide, few-and multi-layer graphene. After the ZnO nanoparticles were attached to graphene, major diffraction peaks corresponding to crystalline planes of ZnO were seen. The qualitative and quantitative compositions of the samples were further evidenced by X-ray photoelectron spectroscopy (XPS). In addition, UV photoelectron spectroscopy (UPS) spectra allowed the determination of the ionization energy and valence band maxima. The energy band alignment of the hybrid materials was established by combining UV-Vis with UPS results. A high photocatalytic activity of NGr-ZnO samples against rhodamine B solution was observed. The associated reactive oxygen species (ROS) generation was monitored by electron paramagnetic resonance (EPR)-spin trapping technique. In accordance with bands alignment and identification of radical species, the photocatalytic mechanism was elucidated.
Collapse
|
23
|
Hydrothermally Synthesized Zinc Vanadate Rods for Electrochemical Supercapacitance Analysis in Various Aqueous Electrolytes. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01581-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Naseem T, Zain-ul-Abdin, Waseem M, Hafeez M, Din SU, Haq S, Mahfoz-ur-Rehman. Reduced Graphene Oxide/Zinc Oxide Nanocomposite: From Synthesis to its Application for Wastewater Purification and Antibacterial Activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Wu S, Zhang J, Sun C, Chen J. Synthesis of MnO2/NiCo-Layered Double Hydroxide Hybrid as Electrode Materials for Supercapacitor. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01481-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Zhai S, Jin K, Zhou M, Fan Z, Zhao H, Li X, Zhao Y, Ge F, Cai Z. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Theerthagiri J, Salla S, Senthil RA, Nithyadharseni P, Madankumar A, Arunachalam P, Maiyalagan T, Kim HS. A review on ZnO nanostructured materials: energy, environmental and biological applications. NANOTECHNOLOGY 2019; 30:392001. [PMID: 31158832 DOI: 10.1088/1361-6528/ab268a] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Zinc oxide (ZnO) is an adaptable material that has distinctive properties, such as high-sensitivity, large specific area, non-toxicity, good compatibility and a high isoelectric point, which favours it to be considered with a few exceptions. It is the most desirable group of nanostructure as far as both structure and properties. The unique and tuneable properties of nanostructured ZnO shows excellent stability in chemically as well as thermally stable n-type semiconducting material with wide applications such as in luminescent material, supercapacitors, battery, solar cells, photocatalysis, biosensors, biomedical and biological applications in the form of bulk crystal, thin film and pellets. The nanosized materials exhibit higher dissolution rates as well as higher solubility when compared to the bulk materials. This review significantly focused on the current improvement in ZnO-based nanomaterials/composites/doped materials for the application in the field of energy storage and conversion devices and biological applications. Special deliberation has been paid on supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, biomedical and biological applications. Finally, the benefits of ZnO-based materials for the utilizations in the field of energy and biological sciences are moreover consistently analysed.
Collapse
Affiliation(s)
- J Theerthagiri
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai 600119, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol Rep 2019; 6:768-781. [PMID: 31428565 PMCID: PMC6695280 DOI: 10.1016/j.toxrep.2019.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/29/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
Synthesis and complete characterization of Green and Chemical Zinc Oxide nanoparticles and Graphene Oxide nanoparticles. Comparison of Graphene Oxide nanoparticles with Zinc oxide nanoparticles formed through both Green and Chemical route of synthesis. Comparative toxicity evaluation of these real world nanoparticles on Drosophila melanogaster using various assays. Observations revealed that different biological responses were caused in the flies due to these nanomaterials that proved their toxicity at different concentrations upon prolonged exposures. Cues to the prospect of these nanoparticles in the field of insect and pest management.
Engineered nanomaterials consisting of multiple nanoparticles (NPs) are finding their use in fields as wide and diverse as medicine, environment, cosmetics, energy and electronics. However, health and environmental impacts of these NPs need to be discerned individually to understand their true toxicity. Due to the promising application of upcoming material like GO-ZnO nanocomposite, the toxicity of ZnO and GO NPs was evaluated and compared individually in our study. This study compares the toxicity of Graphene Oxide (GO) NPs and Zinc Oxide (ZnO) NPs synthesized by Green method and Chemical method on Drosophila melanogaster. The GO, Chemical ZnO and Green ZnO NPs were synthesized and characterized using SEM, HR-TEM, FT-IR, UV–vis, EDX, XRD and DLS studies. NPs were comparatively analyzed for their cytotoxic and neurotoxic behaviors using different assays like MTT assay, mortality rate, larval crawling and climbing assay, total protein content analysis for evaluating the toxic potential of each of these NPs at different concentrations of use. Green ZnO were found to be least cytotoxic while Chemical ZnO caused the most cell damage. GO were found to have intermediary cytotoxicity. However, a different trend was observed with neurotoxicity wherein Green ZnO reportedly affected the neuromuscular coordination the most, while GO was found to have the least affect. This study provided insights into the different toxic effects caused by GO and ZnO NPs on Drosophila as well as comparative toxic effects of Chemical vs Green ZnO NPs.
Collapse
|
29
|
Lawal AT. Graphene-based nano composites and their applications. A review. Biosens Bioelectron 2019; 141:111384. [PMID: 31195196 DOI: 10.1016/j.bios.2019.111384] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
The purpose of the current review article is to present a comprehensive understanding regarding pros and cons of graphene related nanocomposites and to find ways in order to improve the performance of nanocomposites with new designs. Nanomaterials including GR are employed in industrial applications such as supercapacitors, biosensors, solar cells, and corrosion studies. The present article has been prepared in three main categories. In the first part, graphene types have been presented, as pristine graphene, graphene oxide and reduced graphene oxide. In the second part, nanocomposites with many graphene, inorganic and polymeric materials such as polymer/GR, activated carbon/GR, metal oxide/GR, metal/graphene and carbon fibre/GR have been investigated in more detail. In the third part, the focus in on the industrial applications of GR nanocomposite, including super capacitors, biosensors, solar cells, and corrosion protection studies.
Collapse
|
30
|
Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Naik SR, Torvi AI, Achari DD, Kariduraganavar MY. Development of a novel SBA-15 templated mesoporous reduced graphitic oxide composite for high performance supercapacitors and fabrication of its device by an electrospinning technique. NEW J CHEM 2019. [DOI: 10.1039/c9nj02958c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel synthetic route is formulated for the development of mesoporous reduced graphitic oxide (RGO)–silica composites by wrapping SBA-15 between the graphene oxide (GO) layers followed by a chemical reduction process.
Collapse
Affiliation(s)
| | - Anand I. Torvi
- Department of Chemistry
- Karnatak University
- Dharwad 580 003
- India
| | - Divya D. Achari
- Department of Chemistry
- Karnatak University
- Dharwad 580 003
- India
| | | |
Collapse
|