1
|
Irshad MA, Hussain A, Nasim I, Nawaz R, Al-Mutairi AA, Azeem S, Rizwan M, Al-Hussain SA, Irfan A, Zaki MEA. Exploring the antifungal activities of green nanoparticles for sustainable agriculture: a research update. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2024; 11:133. [DOI: 10.1186/s40538-024-00662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/31/2024] [Indexed: 01/06/2025]
|
2
|
Cardoso Juarez AO, Ivan Ocampo Lopez E, Kesarla MK, Bogireddy NKR. Advances in 4-Nitrophenol Detection and Reduction Methods and Mechanisms: An Updated Review. ACS OMEGA 2024; 9:33335-33350. [PMID: 39130545 PMCID: PMC11307991 DOI: 10.1021/acsomega.4c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
This review emphasizes the progress in identifying and eliminating para-nitrophenol (4-NP), a toxic organic compound. It covers various strategical methods and materials, including organic and inorganic nanomaterials, for detecting and reducing 4-NP. Detection techniques such as electrochemical methods. Optical fiber-based surface plasmon resonance and photoluminescence, as well as the mechanisms of Förster Resonance Energy Transfer (FRET) and Inner Filter Effect (IFE) in fluorescence detection, are presented. Removal techniques for this contaminant include homogeneous catalysis, electrocatalysis, photocatalysis, and thermocatalysis, and their reaction mechanisms are also discussed. Further, the theoretical perspectives of 4-NP detection and reduction, parameters influencing the activities, and future perspectives are also reviewed in detail.
Collapse
Affiliation(s)
| | | | - Mohan Kumar Kesarla
- Instituto de Ciencias Físicas
(ICF), Universidad Nacional Autónoma
de Mexico (UNAM), Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C.P 62210, Morelos, Mexico
| | - Naveen Kumar Reddy Bogireddy
- Instituto de Ciencias Físicas
(ICF), Universidad Nacional Autónoma
de Mexico (UNAM), Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C.P 62210, Morelos, Mexico
| |
Collapse
|
3
|
Fayyaz Z, Farrukh MA, Ul-Hamid A, Chong KK. Elucidating the structural, catalytic, and antibacterial traits of Ficus carica and Azadirachta indica leaf extract-mediated synthesis of the Ag/CuO/rGO nanocomposite. Microsc Res Tech 2024; 87:957-976. [PMID: 38174385 DOI: 10.1002/jemt.24487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The present exploration demonstrates the efficient, sustainable, cost-effective, and environment-friendly green approach for the synthesis of silver (Ag)-doped copper oxide (CuO) embedded with reduced graphene oxide (rGO) nanocomposite using the green one-pot method and the green deposition method. Leaf extracts of Ficus carica and Azadirachta indica were used for both methods as reducing and capping agents. The effect of methodology and plant extract was analyzed through different characterization techniques such as UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM). The lowest band gap of 3.0 eV was observed for the Ag/CuO/rGO prepared by the green one-pot method using F. carica. The reduction of graphene oxide (GO) and the formation of metal oxide was confirmed through functional group detection using FT-IR. Calculation of thermodynamic parameters showed that all reactions involved were nonspontaneous and endothermic which shows the stability of nanocomposites. XRD studies revealed the crystallinity, phase purity and small average crystallite size of 32.67 nm. SEM images disclosed that the morphology of the nanocomposites was spherical with agglomeration and rough texture. The particle size of the nanocomposites calculated through HRTEM was found in agreement with the XRD results. The numerous properties of the synthesized nanocomposites enhanced their potential against the degradation of methylene blue, rhodamine B, and ciprofloxacin. The highest percentage degradation of Ag/CuO/rGO was found to be 97%, synthesized using the green one-pot method with F. carica against ciprofloxacin, which might be due to the lowest band gap, delayed electron-hole pair recombination, and large surface area available. The nanocomposites were also tested against the Gram-positive and Gram-negative bacteria. RESEARCH HIGHLIGHTS: Facile synthesis of Ag/CuO/rGO nanocomposite using a green one-pot method and the green deposition method. The lowest band gap of 3.0 eV was observed for nanocomposite prepared by a green one-pot method using Ficus carica. Least average crystallite size of 32.67 nm was found for nanocomposite prepared by a green one-pot method using F. carica. Highest antibacterial and catalytic activity (97%) was obtained against ciprofloxacin with nanocomposite prepared through green one-pot method using F. carica. A mechanism of green synthesis is proposed.
Collapse
Affiliation(s)
- Zirwa Fayyaz
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Kok-Keong Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| |
Collapse
|
4
|
Nelwamondo AM, Kaningini AG, Ngmenzuma TYA, Maseko ST, Maaza M, Mohale KC. Biosynthesis of magnesium oxide and calcium carbonate nanoparticles using Moringa oleifera extract and their effectiveness on the growth, yield and photosynthetic performance of groundnut ( Arachis hypogaea L.) genotypes. Heliyon 2023; 9:e19419. [PMID: 37662830 PMCID: PMC10472070 DOI: 10.1016/j.heliyon.2023.e19419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Small-scale crop production has been significantly impacted by the heavy price, limited supply, and frequent shortage of inorganic fertilisers, which is partly attributable to the Covid-19 pandemic outbreak and led to rising oil and food prices. Thus, integrating environmentally friendly agricultural practices that can improve crop productivity and advance the sustainability of agricultural cropping systems is critical. This study synthesized and characterised MgO and CaCO3Moringa oleifera nanoparticles and assessed their effects on groundnut genotypes. The effect of biosynthesized MgO and CaCO3 nanoparticles using Moringa oleifera extract on the growth and yield of groundnut genotypes exposed to different concentrations of 50, 100 and 200 mg/L was examined. The experiment was carried laid out in a 3 × 8 factorial completely randomized design (CRD) with eight replicates per treatment. Each plant was sprayed with 5 ml of the solution crystalline size of the MgO and CaCO3 nanoparticles 2.48 nm and 10.30 nm, respectively. Foliar application of nanoparticle treatments was applied weekly except for the negative control. The collected data were subjected to a two-way analysis of variance (ANOVA). Mean separations were done using Tukey's Honest Significant Difference (HSD) at P < 0.05. The findings demonstrated that foliar application of MgO and CaCO3 nanoparticles positively affected groundnut biomass production. The results further revealed that the concentration of 50 mg/L of MgO and 100 mg/L of CaCO3 considerably improved groundnut plant growth, yield, and nodulation in comparison with other treatments. There is a great deal of evidence signifying that foliar applications of 50 mg/L of MgO 100 mg/L CaCO3 contributed greatly to plant growth and crop production. Therefore, 50 mg/L of MgO and 100 mg/L CaCO3 nanoparticles foliar application could be recommended as nano-fertilisers application rate for groundnut production.
Collapse
Affiliation(s)
- Aluwani Mutanwa Nelwamondo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Amani Gabriel Kaningini
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
| | | | - Sipho Thulani Maseko
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - Keletso Cecilia Mohale
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
5
|
Saranya J, Saminathan P, Ankireddy SR, Shaik MR, Khan M, Khan M, Shaik B. Cerium Oxide/Graphene Oxide Hybrid: Synthesis, Characterization, and Evaluation of Anticancer Activity in a Breast Cancer Cell Line (MCF-7). Biomedicines 2023; 11:biomedicines11020531. [PMID: 36831067 PMCID: PMC9952927 DOI: 10.3390/biomedicines11020531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
In the present study, we used a simple ultrasonic approach to develop a Cerium oxide/Graphene oxide hybrid (CeO2/GO hybrid) nanocomposite system. Particle size analysis, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) have been used to analyze the physio-chemical characteristics of the developed nanocomposite. The synthesized hybrid system has also been examined to assess its anticancer capability against MCF-7 cell lines and normal cell lines at different sample concentrations, pH values, and incubation intervals using an antiproliferative assay test. The test results demonstrate that as sample concentration rises, the apoptotic behavior of the CeO2/GO hybrid in the MCF-7 cell line also rises. The IC50 was 62.5 µg/mL after 72 h of incubation. Cytotoxicity of cisplatin bound CeO2/GO hybrid was also tested in MCF-7 cell lines. To identify apoptosis-associated alterations of cell membranes during the process of apoptosis, a dual acridine orange/ethidium bromide (AO/EB) fluorescence staining was carried out at three specified doses (i.e., 1000 µg/mL, 250 µg/mL, and 62.5 µg/mL of CeO2/GO hybrid). The color variations from both live (green) and dead (red) cells were examined using fluorescence microscopy under in vitro conditions. The quantitative analysis was performed using flow cytometry to identify the cell cycle at which the maximum number of MCF-7 cells had been destroyed as a result of interaction with the developed CeO2/GO hybrid (FACS study). According to the results of the FACS investigation, the majority of cancer cells were inhibited at the R3 (G2/M) phase. Therefore, the CeO2/GO hybrid has successfully showed enhanced anticancer efficacy against the MCF-7 cell line at the IC50 concentration. According to the current study, the CeO2/GO platform can be used as a therapeutic platform for breast cancer. The synergetic effects of the developed CeO2/GO hybrid with the MCF-7 cell line are presented.
Collapse
Affiliation(s)
- J. Saranya
- Department of Electronics and Communication Engineering, Rajalakshmi Engineering College, Chennai 602105, Tamil Nadu, India
- Correspondence: (J.S.); (M.R.S.); Tel.: +966-11-4670439 (M.R.S.)
| | - P. Saminathan
- Sasaam Biologicals Lab Services, Ashok Nagar, Chennai 600083, Tamil Nadu, India
| | - Seshadri Reddy Ankireddy
- Dr. Buddolla’s Institute of Life Sciences, Renigunta Road, Tirupati 517503, Andhra Pradesh, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (J.S.); (M.R.S.); Tel.: +966-11-4670439 (M.R.S.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Kumar PS, G P, Elavarasan N, Sreeja BS. GO/ZnO nanocomposite - as transducer platform for electrochemical sensing towards environmental applications. CHEMOSPHERE 2023; 313:137345. [PMID: 36423727 DOI: 10.1016/j.chemosphere.2022.137345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/30/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Graphene Oxide-Zinc Oxide (GO-ZnO) - a new nanomaterial that has queued the interest of researchers. Their intriguing promising physical and electrochemical features of electrode material have led to its widespread use in electrochemical sensor applications. GO-ZnO based nanomaterial were extensively exploited in the construction of electrochemical sensors due to their adaptability and distinct qualities. On understanding the structural role of these materials, their modification processes are critical for realizing their full potential. The advancement of technology on new concepts and strategies has revolutionized the field of sensor devices with high sensitivities and selectivity. These tools can test a range of contaminants quickly, accurately, and affordably while performing automated chemical analysis in complicated matrices. This paper highlights the electrochemical transducer surface for sensing various analytes and current research activity on GO-ZnO nanocomposite. Additionally, we talked about current developments in GO-ZnO nanostructured composites to identify relevant analytes (i.e., Nitrophenols, Antibiotic Drugs, Biomolecules). While being used in the laboratory, the majority of produced systems have proven to bring about excellent gains. Their monitoring application still has a long way to go before it is fixed due to problems like technological advancements and multifunctional strategies to get around the challenges for improving the sensing systems.
Collapse
Affiliation(s)
- P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - Padmalaya G
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - N Elavarasan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - B S Sreeja
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| |
Collapse
|
7
|
Recent progress of phytogenic synthesis of ZnO, SnO 2, and CeO 2 nanomaterials. Bioprocess Biosyst Eng 2022; 45:619-645. [PMID: 35244777 DOI: 10.1007/s00449-022-02713-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023]
Abstract
A critical investigation on the fabrication of metal oxide nanoparticles (NPs) such as ZnO, SnO2, and CeO2 NPs synthesized from green and phytogenic method using plants and various plant parts have been compiled. In this review, different plant extraction methods, synthesis methods, characterization techniques, effects of plant extract on the physical, chemical, and optical properties of green synthesized ZnO, SnO2, and CeO2 NPs also have been compiled and discussed. Effect of several parameters on the size, morphology, and optical band gap energy of metal oxide have been explored. Moreover, the role of solvents has been found important and discussed. Extract composition i.e. phytochemicals also found to affect the morphology and size of the synthesized ZnO, SnO2, and CeO2 NPs. It was found that, there is no universal extraction method that is ideal and extraction techniques is unique to the plant type, plant parts, and solvent used.
Collapse
|
8
|
Ashok B, Devi MPI, Sivaranjana P, Rajulu AV, Ismail SO, Mohammad F, Al-Lohedan HA, Nagarajan R. Nanocomposite cotton gauze cloth with in situ generated silver, copper and their binary metal nanoparticles by bioreduction method. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Basa Ashok
- Department of Physics, University College of Engineering, Osmania University, Hyderabad, India
| | - M. P. Indira Devi
- Centre for Biocomposites, International Research Centre, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - P. Sivaranjana
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Anumakonda Varada Rajulu
- Centre for Composite Materials, Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Sikiru Oluwarotimi Ismail
- Department of Engineering, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, Hertfordshire, England, UK
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rajini Nagarajan
- Centre for Composite Materials, Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| |
Collapse
|
9
|
Nazaripour E, Mousazadeh F, Doosti Moghadam M, Najafi K, Borhani F, Sarani M, Ghasemi M, Rahdar A, Iravani S, Khatami M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Mohana Roopan S, Khan MA. MoS 2 based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1962493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - Mohammad Ahmed Khan
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
| |
Collapse
|
11
|
Naidi SN, Harunsani MH, Tan AL, Khan MM. Green-synthesized CeO 2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 2021; 9:5599-5620. [PMID: 34161404 DOI: 10.1039/d1tb00248a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are a sought-after material in numerous fields due to their potential applications such as in catalysis, cancer therapy, photocatalytic degradation of pollutants, sensors, polishing agents. Green synthesis usually involves the production of CeO2 assisted by organic extracts obtained from plants, leaves, flowers, bacteria, algae, food, fruits, etc. The phytochemicals present in the organic extracts adhere to the NPs and act as reducing and/or oxidizing agents and capping agents to stabilize the NPs, modify the particle size, morphology and band gap energy of the as-synthesized materials, which would be advantageous for numerous applications. This review focuses on the green extract-mediated synthesis of CeO2 NPs and discusses the effects on CeO2 NPs of various synthesis methods that have been reported. Several photocatalytic, antimicrobial, antioxidant and cytotoxicity applications have been evaluated, compared and discussed. Future prospects are also suggested.
Collapse
Affiliation(s)
- Siti Najihah Naidi
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
12
|
Garg D, Matai I, Garg A, Sachdev A. Tragacanth Hydrogel Integrated CeO
2
@rGO Nanocomposite as Reusable Photocatalysts for Organic Dye Degradation. ChemistrySelect 2020. [DOI: 10.1002/slct.202002041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organization (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific and Innovative Research CSIR-CSIO Chandigarh 160030 India
| | - Ishita Matai
- Central Scientific Instruments Organization (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific and Innovative Research CSIR-CSIO Chandigarh 160030 India
| | - Anjali Garg
- Central Scientific Instruments Organization (CSIR-CSIO) Chandigarh 160030 India
| | - Abhay Sachdev
- Central Scientific Instruments Organization (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific and Innovative Research CSIR-CSIO Chandigarh 160030 India
| |
Collapse
|