1
|
Ullah MZ, Shahzad SA, Assiri MA, Irshad H, Rafique S, Shakir SA, Mumtaz A. An extensive experimental and DFT studies on highly selective detection of nitrobenzene through deferasirox based new fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123607. [PMID: 37948931 DOI: 10.1016/j.saa.2023.123607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
A deferasirox based substituted triazole amine sensor TAD has been synthesized for the highly selective detection of nitrobenzene in real samples. Sensor TAD exhibited selective quenching response against nitrobenzene among the other nitroaromatic compounds (NACs). Photoinduced electron transfer (PET) process was devised as plausible sensing mechanisms which was supported via UV-visible and fluorescence spectroscopy, 1H NMR titration experiment, density functional theory (DFT) analysis and Job's plot. Non-covalent interaction (NCI) analysis and Bader's quantum theory of atoms in molecules (QTAIM) analysis were performed to investigate the presence of non-covalent interactions and symmetry perturbation theory (SAPT0) was performed for energy decomposition and quantitative analysis of interaction energies between sensor TAD and NB. Furthermore, sensor TAD was practically applied for the identification of NB in real samples.
Collapse
Affiliation(s)
- Muhammad Zahid Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sanwa Rafique
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Syed Ahmed Shakir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
2
|
Li S, Ouyang T, Guo X, Dong W, Ma Z, Fei T. Tetraphenylethene-Based Cross-Linked Conjugated Polymer Nanoparticles for Efficient Detection of 2,4,6-Trinitrophenol in Aqueous Phase. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6458. [PMID: 37834593 PMCID: PMC10573890 DOI: 10.3390/ma16196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The cross-linked conjugated polymer poly(tetraphenylethene-co-biphenyl) (PTPEBP) nanoparticles were prepared by Suzuki-miniemulsion polymerization. The structure, morphology, and pore characteristics of PTPEBP nanoparticles were characterized by FTIR, NMR, SEM, and nitrogen adsorption and desorption measurements. PTPEBP presents a spherical nanoparticle morphology with a particle size of 56 nm; the specific surface area is 69.1 m2/g, and the distribution of the pore size is centered at about 2.5 nm. Due to the introduction of the tetraphenylethene unit, the fluorescence quantum yield of the PTPEBP nanoparticles reaches 8.14% in aqueous dispersion. Combining the porosity and nanoparticle morphology, the fluorescence sensing detection toward nitroaromatic explosives in the pure aqueous phase has been realized. The Stern-Volmer quenching constant for 2,4,6-trinitrophenol (TNP) detection is 2.50 × 104 M-1, the limit of detection is 1.07 μM, and the limit of quantification is 3.57 μM. Importantly, the detection effect of PTPEBP nanoparticles toward TNP did not change significantly after adding other nitroaromatic compounds, indicating that the anti-interference and selectivity for TNP detection in aqueous media is remarkable. In addition, the spike recovery test demonstrates the potential of PTPEBP nanoparticles for detecting TNP in natural environmental water samples.
Collapse
Affiliation(s)
- Shengjie Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianwen Ouyang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xue Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenyue Dong
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401135, China
| | - Zhihua Ma
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401135, China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Irshad H, Rafique S, Khan AM, Nawazish S, Rehman HU, Imran M, Shahzad SA, Farooq U. AIEE active J-aggregates of naphthalimide based fluorescent probe for detection of Nitrobenzene: Combined experimental and theoretical approaches for Non-covalent interaction analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122273. [PMID: 36584641 DOI: 10.1016/j.saa.2022.122273] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A new naphthalimide-based fluorescent probe NS with exceptional J-aggregates based aggregation-induced emission enhancement (AIEE) properties was rationally synthesized through a single-step imidation reaction. Probe NS exhibited excellent AIEE properties in aqueous media through the formation of J-aggregates with remarkable red-shift. The AIEE active probe NS was used for selective and sensitive detection of nitrobenzene (NB) based on fluorescence quenching response. Formation of J-aggregates was assessed through fluorescence titration. These J-aggregates contributed significantly to produce favorable interaction between probe NS and NB. The highly selective fluorescence detection of NB was accredited to the adjustable smaller size of NB that can easily penetrate into interstitial spaces of probe molecules. Ability of sensor to detect NB in solid state was also accomplished through solid state fluorescence spectroscopy. Nature of interaction and sensitivity of probe NS for NB has also been investigated through 1H NMR titration and density functional theory (DFT) including non-covalent interaction (NCI), quantum theory of atom in molecule (QTAIM), electron density differences (EDD), frontier molecular orbitals (FMO) and density of states (DOS) analysis. Advantageously, probe exhibited colorimetric and vapor phase detection of NB. Moreover, probe was quite sensitive for the trace detection of NB in real samples.
Collapse
Affiliation(s)
- Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sanwa Rafique
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Muhammad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Shamyla Nawazish
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Habib Ur Rehman
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
4
|
Majeed S, Khan TA, Waseem MT, Junaid HM, Khan AM, Shahzad SA. A ratiometric fluorescent, colorimetric, and paper sensor for sequential detection of Cu2+ and glutathione in food: AIEE and reversible piezofluorochromic activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Zhou X, Shi J, Bai X. Ultrasonic assisted preparation of ultrafine Pd supported on NiFe-layered double hydroxides for p-nitrophenol degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56178-56199. [PMID: 35332458 DOI: 10.1007/s11356-022-19641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
NiFe-layered double hydroxide (NiFe-LDH)-loaded ultrafine Pd nanocatalysts (Pd/NiFe-LDHs) were prepared by a facile ultrasonic-assisted in situ reduction technology without any stabilizing agents or reducing agents. Pd/NiFe-LDHs were characterized by FT-IR, XRD, XPS, and TEM. PdNPs are uniformly dispersed on NiFe-LDHs with a particle size distribution of 0.77-2.06 nm and an average particle size of 1.43 nm. Hydroxyl groups in Fe-OH and Ni-OH were dissociated into hydrogen radicals (·H) excited by ultrasound, and ·H reduced Pd2+ to ultrafine PdNPs. Then, Pd was coordinated with O in Ni-O and Fe-O, which improved the stability of the catalysts. Pd/NiFe-LDHs completely degraded 4-NP in 5 min, and the TOF value was 597.66 h-1, which was 16.7 times that of commercial Pd/C. The 4-NP conversion rate remained at 98.75% over Pd/NiFe-LDHs after 10 consecutive catalytic cycles. In addition, the catalyst also has high catalytic activity for the reduction of Congo red, methylene blue, and methyl orange by NaBH4.
Collapse
Affiliation(s)
- Xuan Zhou
- Heilongjiang Academy of Sciences, Harbin, China
| | - Jiaming Shi
- School of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xuefeng Bai
- Heilongjiang Academy of Sciences, Harbin, China.
- School of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
6
|
Synthesis of AIEE active triazine based new fluorescent and colorimetric probes: A reversible mechanochromism and sequential detection of picric acid and ciprofloxacin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Hussain S, Muhammad Junaid H, Tahir Waseem M, Rauf W, Jabbar Shaikh A, Anjum Shahzad S. Aggregation-Induced Emission of Quinoline Based Fluorescent and Colorimetric Sensors for Rapid Detection of Fe 3+ and 4-Nitrophenol in Aqueous Medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121021. [PMID: 35180483 DOI: 10.1016/j.saa.2022.121021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/14/2023]
Abstract
New quinoline based fluorescent sensors 4 and 5 were rationally synthesized that exhibited excellent aggregation induced emission (AIE) in an aqueous medium. High fluorescence emission of sensors was accompanied by a noticeable redshift in their absorption and emission spectra that corresponds to the formation of J-aggregates. An AIE feature of sensors 4 and 5 was used for selective detection of Fe3+ and 4-NP in an aqueous medium that is attributed to the involvement of intermolecular charge transfer (ICT). The interaction mechanism of sensors with Fe3+ and 4-NP was investigated through 1H NMR titration, Jobs plots, dynamic light scattering (DLS), and DFT analysis. The fluorescence quenching response of sensors 4 and 5 displayed distinguished linear behavior with the concentrations of Fe3+ and limits of detection (LOD) were calculated to be 15 and 10 nM, respectively. Further, LOD of sensors 4 and 5 for 4-NP (7.3 and 4.1 nM, respectively) was very low compared to previously reported sensors. Moreover, sensors' coated test strips were fabricated for solid-supported detection of Fe3+ and 4-NP. Sensors were successfully applied for the detection and quantification of Fe3+ and 4-NP in real water samples. Additionally, sensors were used for the determination of trace amounts of Fe3+ in the human serum sample.
Collapse
Affiliation(s)
- Saddam Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Waqar Rauf
- Pakistan Institute of Engineering and Applied Sciences, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
8
|
Wang D, Marin L, Cheng X. Chitosan-bodipy macromolecular fluorescent probes prepared by click reactions for highly sensitive and selective recognition of 2,4-dinitrophenylhydrazine. NEW J CHEM 2022. [DOI: 10.1039/d2nj03923k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitosan-based probes were prepared and they could identify 2,4-dinitrophenylhydrazine (DNH). CC bonds formed in a click reaction act as recognizing sites for DNH.
Collapse
Affiliation(s)
- Die Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China, 430073
| | - Luminita Marin
- “Petru Poni’’ Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China, 430073
| |
Collapse
|
9
|
Lu S, Fan W, Liu H, Gong L, Xiang Z, Wang H, Yang C. Four imidazole derivative AIEE luminophores: sensitive detection of NAC explosives. NEW J CHEM 2021. [DOI: 10.1039/d0nj06007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Four imidazole sensors with aggregation-induced emission enhancement (AIEE) properties were used for the sensitive detection of NAC explosives.
Collapse
Affiliation(s)
- Shuang Lu
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Wutu Fan
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Han Liu
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Lingli Gong
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Zhouxuan Xiang
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Huimin Wang
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Changying Yang
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| |
Collapse
|