1
|
Ke S, Wang B, Liu G, Huang W, Gong Y, Pan K. DFT study of free radical scavenging mechanisms in UiO-66-(OH) 2 and UiO-66-NH 2 MOFs. RSC Adv 2025; 15:20220-20232. [PMID: 40524791 PMCID: PMC12169133 DOI: 10.1039/d5ra01568e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/28/2025] [Indexed: 06/19/2025] Open
Abstract
This study employs density functional theory (DFT) to investigate three common free radical scavenging mechanisms (hydrogen atom transfer (HAT), single electron transfer proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET)) in UiO-66-(OH)2 and UiO-66-NH2 metal-organic framework (MOF) nanoparticles under gas, benzene and aqueous phase conditions. The reaction processes between UiO-66-(OH)2/UiO-66-NH2 and hydroxyl radicals (˙OH) were simulated to elucidate detailed radical capture pathways, and the computational results were validated by macroscopic DPPH radical scavenging experiments. The results indicate that: (1) among the three mechanisms, HAT consistently exhibits the lowest bond dissociation energy across all phases, suggesting MOF nanoparticles preferentially undergo hydrogen atom transfer over electron transfer during radical scavenging; (2) compared to gas phase and nonpolar solvent (benzene), polar solvent (water) significantly lowers the energy barriers for both electron transfer and hydrogen transfer, thus enhancing reactivity across all mechanisms; (3) UiO-66-(OH)2 exhibits a radical scavenging rate constant of 1.0 × 109 M-1 s-1, higher than 7.63 × 108 M-1 s-1 for UiO-66-NH2; (4) DPPH assays reveal that UiO-66-(OH)2 exhibits an 8% greater radical scavenging efficiency than UiO-66-NH2, in agreement with DFT predictions and confirming the antioxidative benefit of hydroxyl functionalization. This study proposes a combined DFT and experimental screening workflow for radical scavengers, offering an efficient and economical approach to rapidly identify novel MOF-based radioprotective radical scavengers.
Collapse
Affiliation(s)
- Shuai Ke
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guilin 541004 China
- Guizhou Equipment Manufacturing Polytechnic Guiyang 551400 China
| | - Bo Wang
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Ganggang Liu
- Guizhou Zhenhua Fengguang Semiconductor Co., Ltd Guiyang 550018 China
| | - Wei Huang
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Yubing Gong
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guilin 541004 China
| | - Kailin Pan
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology Guilin 541004 China
| |
Collapse
|
2
|
Jiao L, Gao X, Xing J, Zhou Y, Liu X, Zhao A, Zhang Z. Nuclease-Mimetic Nanomaterials: From Fundamentals to Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502660. [PMID: 40304160 DOI: 10.1002/smll.202502660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/04/2025] [Indexed: 05/02/2025]
Abstract
With the rapid development of nanozymes and nanomedicine, designing novel nanostructures directly acting on deoxyribonucleic acid (DNA) has great therapeutic potential because DNA is the carrier of genetic information and plays a vital role on life activities of the organism. Specifically, DNA cleavage is an important step in most of these DNA engineering technologies. While nucleases play crucial roles in the cell metabolism by efficient DNA cutting, the practical applications of natural nucleases suffer from some intrinsic shortcomings such as high cost and intolerance to harsh environments. In the past 20 years, great varieties of engineered nanostructures with DNA cleavage (nuclease-mimetic nanomaterials, abbreviated as nuclease mimics) have been developed rapidly and widely used in biomedical fields. In view of the significant progress of nuclease-mimetic nanomaterials, the possible DNA cleavage mechanism mediated by nuclease-mimetic nanomaterials is systematically discussed in this review, and the classification of nuclease-mimetic nanomaterials is illustrated. Their potential biomedical applications, especially in anti-biofilms and cancer treatment, are also comprehensively summarized. Finally, the current opportunities and challenges are discussed to stimulate the research of understanding and development of nuclease-mimetic nanomaterials.
Collapse
Affiliation(s)
- Lizhi Jiao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyin Gao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Jinzhu Xing
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| | - Yuan Zhou
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Andong Zhao
- Department of Chemistry, School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132000, China
| | - Zhijun Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University, Shengzhou, 312400, China
| |
Collapse
|
3
|
Li QJ, Xing F, Wu WT, Zhe M, Zhang WQ, Qin L, Huang LP, Zhao LM, Wang R, Fan MH, Zou CY, Duan WQ, Li-Ling J, Xie HQ. Multifunctional metal-organic frameworks as promising nanomaterials for antimicrobial strategies. BURNS & TRAUMA 2025; 13:tkaf008. [PMID: 40276581 PMCID: PMC12018305 DOI: 10.1093/burnst/tkaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 04/26/2025]
Abstract
Bacterial infections pose a serious threat to human health. While antibiotics have been effective in treating bacterial infectious diseases, antibiotic resistance significantly reduces their effectiveness. Therefore, it is crucial to develop new and effective antimicrobial strategies. Metal-organic frameworks (MOFs) have become ideal nanomaterials for various antimicrobial applications due to their crystalline porous structure, tunable size, good mechanical stability, large surface area, and chemical stability. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Pure MOFs can release metal ions to modulate cellular behaviors and kill various microorganisms. Additionally, MOFs can act as carriers for delivering antimicrobial agents in a desired manner. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Furthermore, certain types of MOFs can be combined with traditional photothermal or other physical stimuli to achieve broad-spectrum antimicrobial activity. Recently an increasing number of researchers have conducted many studies on applying various MOFs for diseases caused by bacterial infections. Based on this, we perform this study to report the current status of MOF-based antimicrobial strategy. In addition, we also discussed some challenges that MOFs currently face in biomedical applications, such as biocompatibility and controlled release capabilities. Although these challenges currently limit their widespread use, we believe that with further research and development, new MOFs with higher biocompatibility and targeting capabilities can provide diversified treatment strategies for various diseases caused by bacterial infections.
Collapse
Affiliation(s)
- Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Wen-Ting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Wen-Qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Qin
- Integrated Care Management Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Li-Ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Qiang Duan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| |
Collapse
|
4
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
5
|
Ant Bursalı E. Novel Tannic Acid-Modified Cobalt-Based Metal-Organic Framework: Synthesis, Characterization, and Antimicrobial Activity. ACS OMEGA 2024; 9:18946-18956. [PMID: 38708246 PMCID: PMC11064010 DOI: 10.1021/acsomega.3c09169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Metal-organic frameworks (MOFs) are a class of hybrid inorganic-organic materials with typical porous structures and a unique morphology. Due to their diversity, they are extensively used in a wide range of applications such as environmental, catalysis, biomedicine, etc. In this study, a novel cobalt-based MOF modified with tannic acid (Co-TPA/TA) (TPA: terephthalic acid; TA: tannic acid) as a promising material for antimicrobial agents was synthesized and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and thermogravimetric analysis and compared with an as-synthesized cobalt-based framework. Co-TPA/TA demonstrated good antimicrobial efficiency under optimum conditions against yeast Candida albicans ATCC 10231, Gram-negative Escherichia coli ATCC 8739, and Gram-positive Staphylococcus aureus ATCC 6538 with an inhibition zone ranging from 14 to 20 mm. Reduced ATP levels, generation of reactive oxygen species, membrane damage from cobalt ion release, and development of an alkaline microenvironment could all be contributing factors to the possible antimicrobial pathways. The novel framework can be obtained using simple, affordable, and easily accessible commercial ligands and is considered to have the potential to be used as an antimicrobial material in the future.
Collapse
Affiliation(s)
- Elif Ant Bursalı
- Department of Chemistry, Dokuz
Eylul University, Tınaztepe, Izmir 35390, Turkiye
| |
Collapse
|
6
|
Lin Z, Liao D, Jiang C, Nezamzadeh-Ejhieh A, Zheng M, Yuan H, Liu J, Song H, Lu C. Current status and prospects of MIL-based MOF materials for biomedicine applications. RSC Med Chem 2023; 14:1914-1933. [PMID: 37859709 PMCID: PMC10583815 DOI: 10.1039/d3md00397c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
This article mainly reviews the biomedicine applications of two metal-organic frameworks (MOFs), MIL-100(Fe) and MIL-101(Fe). These MOFs have advantages such as high specific surface area, adjustable pore size, and chemical stability, which make them widely used in drug delivery systems. The article first introduces the properties of these two materials and then discusses their applications in drug transport, antibacterial therapy, and cancer treatment. In cancer treatment, drug delivery systems based on MIL-100(Fe) and MIL-101(Fe) have made significant progress in chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), nano-enzyme therapy, and related combined therapy. Overall, these MIL-100(Fe) and MIL-101(Fe) materials have tremendous potential and diverse applications in the field of biomedicine.
Collapse
Affiliation(s)
- Zengqin Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Chenyi Jiang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Minbin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hui Yuan
- Department of Gastroenterology, Huizhou Municipal Central Hospital Huizhou Guangdong 516001 China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital Dongguan 523770 China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
7
|
Wang Y, Gao N, Hu J. Multi‐responsive Luminescent Probe with Bis‐imidazolyl Biphenyl and Aromatic Polycarboxylic Acids Ligands for Sensing Fe
3+
, Cr
2
O
7
2−
and CrO
4
2−
in Aqueous Solution. ChemistrySelect 2023. [DOI: 10.1002/slct.202204549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Yan Wang
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Ningning Gao
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| | - Jiaqi Hu
- Anhui Key Laboratory of Functional Coordination Compounds School of Chemistry and Chemical Engineering Anqing Normal University Anqing 246011 China
| |
Collapse
|
8
|
Wang S, Song L, Liu S, Pei X, Zhao Y, Min C, Shao R, Ma T, Yin Y, Xu Z, Wang C. Metal-organic framework nanoparticles as a free radical scavenger improving the stability of epoxy under high dose gamma irradiation. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2022.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Synthesis, characterization, and anticancer activity of mononuclear Schiff-base metal complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Kharissova OV, Zhinzhilo VA, Bryantseva JD, Uflyand IE, Kharisov BI. ZrIV metal–organic framework based on terephthalic acid and 1,10-phenanthroline as an adsorbent for solid phase extraction of tetracycline antibiotics. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Uflyand IE, Zhinzhilo VA, Bryantseva JD. Synthesis and Study of Sorption, Antioxidant and Antibacterial Properties of MOF based on Cobalt Terephthalate and 1,10-Phenanthroline. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Liu G, Wu S, Liu W, Gao G, Zhang Y, Gao E, Zhu M. Three novel spiral chain Nd (III) Eu (III) Sm (III)complexes bridged by 1,1 '(1,4‐phenylene‐bis [methylene])‐bis (pyridine‐3‐carboxylicaicd): Synthesis, structural characterization, and antitumor activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gongchi Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Wei Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Guoxu Gao
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education) Shenyang University Chemical Technology Shenyang China
| |
Collapse
|
13
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Amaravathi C, Geetha K, Surendrababu MS. Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Mn-based MOFs: design, characterization for enhanced biological activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1953530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chinthamreddy Amaravathi
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, Telangana, India
- Department of Chemistry, CMR Technical Campus, Hyderabad, Telangana, India
| | - Karra Geetha
- Department of Biotechnology, CMR College of Pharmacy, Hyderabad, Telangana, India
| | | |
Collapse
|