1
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Shayan S, Arashkia A, Azadmanesh K. Modifying oncolytic virotherapy to overcome the barrier of the hypoxic tumor microenvironment. Where do we stand? Cancer Cell Int 2022; 22:370. [PMID: 36424577 PMCID: PMC9686061 DOI: 10.1186/s12935-022-02774-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Viruses are completely dependent on host cell machinery for their reproduction. As a result, factors that influence the state of cells, such as signaling pathways and gene expression, could determine the outcome of viral pathogenicity. One of the important factors influencing cells or the outcome of viral infection is the level of oxygen. Recently, oncolytic virotherapy has attracted attention as a promising approach to improving cancer treatment. However, it was shown that tumor cells are mostly less oxygenated compared with their normal counterparts, which might affect the outcome of oncolytic virotherapy. Therefore, knowing how oncolytic viruses could cope with stressful environments, particularly hypoxic environments, might be essential for improving oncolytic virotherapy.
Collapse
Affiliation(s)
- Sara Shayan
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Arash Arashkia
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Kayhan Azadmanesh
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| |
Collapse
|
3
|
Eggert S, Gutbrod MS, Liebsch G, Meier R, Meinert C, Hutmacher DW. Automated 3D Microphysiometry Facilitates High-Content and Highly Reproducible Oxygen Measurements within 3D Cell Culture Models. ACS Sens 2021; 6:1248-1260. [PMID: 33621068 DOI: 10.1021/acssensors.0c02551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microphysiometry is a powerful technique to study metabolic parameters and detect changes to external stimuli. However, applying this technique for automated label-free and real-time measurements within cell-laden three-dimensional (3D) cell culture constructs remains a challenge. Herein, we present an entirely automated microphysiometry setup that combines needle-type microsensors with motorized sample and sensor positioning systems inside a standard tissue-culture incubator. The setup records dissolved oxygen as a metabolic parameter along the z-direction within cell-laden 3D constructs in a minimally invasive manner. The microphysiometry setup was applied to characterize the spatial oxygen distribution within thick cell-laden 3D constructs, study the time-dependent changes on the oxygen tension within 3D breast cancer models following a chemotherapeutic treatment, and identify kinetics and recovery effects after drug exposure over 5 weeks. Our data suggest that the microphysiometry setup enables highly reproducible measurements without human intervention, due to the high degree of automation and positional accuracy. The results demonstrate the applicability of the setup to provide valuable long-term insights into oxygenation within 3D models using minimally invasive, label-free, and entirely automated analysis methods.
Collapse
Affiliation(s)
- Sebastian Eggert
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- Chair of Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Garching 85748, Germany
| | - Martin S. Gutbrod
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Gregor Liebsch
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Robert Meier
- PreSens Precision Sensing GmbH, Am Biopark 11, 93053 Regensburg, Germany
| | - Christoph Meinert
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
| | - Dietmar W. Hutmacher
- Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, 4000 QLD, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, 4000 QLD, Australia
| |
Collapse
|
4
|
Rivera KR, Pozdin VA, Young AT, Erb PD, Wisniewski NA, Magness ST, Daniele M. Integrated phosphorescence-based photonic biosensor (iPOB) for monitoring oxygen levels in 3D cell culture systems. Biosens Bioelectron 2018; 123:131-140. [PMID: 30060990 DOI: 10.1016/j.bios.2018.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
Physiological processes, such as respiration, circulation, digestion, and many pathologies alter oxygen concentration in the blood and tissue. When designing culture systems to recapitulate the in vivo oxygen environment, it is important to integrate systems for monitoring and controlling oxygen concentration. Herein, we report the design and engineering of a system to remotely monitor and control oxygen concentration inside a device for 3D cell culture. We integrate a photonic oxygen biosensor into the 3D tissue scaffold and regulate oxygen concentration via the control of purging gas flow. The integrated phosphorescence-based oxygen biosensor employs the quenching of palladium-benzoporphyrin by molecular oxygen to transduce the local oxygen concentration in the 3D tissue scaffold. The system is validated by testing the effects of normoxic and hypoxic culture conditions on healthy and tumorigenic breast epithelial cells, MCF-10A cells and BT474 cells, respectively. Under hypoxic conditions, both cell types exhibited upregulation of downstream target genes for the hypoxia marker gene, hypoxia-inducible factor 1α (HIF1A). Lastly, by monitoring the real-time fluctuation of oxygen concentration, we illustrated the formation of hypoxic culture conditions due to limited diffusion of oxygen through 3D tissue scaffolds.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Vladimir A Pozdin
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC 27695, USA
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Patrick D Erb
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | | | - Scott T Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
SUN YUANWAN, CHEN KUENYUAN, KWON CHULHOON, CHEN KUNMING. CK0403, a 9-aminoacridine, is a potent anti-cancer agent in human breast cancer cells. Mol Med Rep 2015; 13:933-8. [DOI: 10.3892/mmr.2015.4604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 10/22/2015] [Indexed: 11/06/2022] Open
|
6
|
Chen H, Guan Y, Yuan G, Zhang Q, Jing N. A perylene derivative regulates HIF-1α and Stat3 signaling pathways. Bioorg Med Chem 2013; 22:1496-505. [PMID: 24485121 DOI: 10.1016/j.bmc.2013.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly evident that improving the cure rate of many cancers will require treatment regimens hit more than one validated tumor targets. Developing an anti-cancer agent that targets two oncoproteins simultaneously is a promising strategy for accomplishing this goal. It would be expected to promote drug efficacy, reduce therapy-resistant without introducing additional toxic side effects. HIF-1α is a key regulator of the cellular response to hypoxia and is involved in tumor angiogenesis and cancer cell survival, glucose metabolism, and invasion. Stat3 has several oncogenic functions, including suppression of anti-tumor immune responses and promotion of inflammation. Recently, we have identified the perylene derivative, TEL03, as a dual inhibitor that targets both HIF-1α and Stat3. TEL03 blocks the expression of both HIF-1α and Stat3, regulated oncogenes (e.g., Bcl-2, VEGF, Glut1, and others) in cancer cells, and induces cancer cell apoptosis. The results demonstrated that: (i) TEL03 blocks Stat3 phosphorylation, and inhibits Stat3 transcriptional activity; and (ii) interferes the binding of HIF-1α to p300/CBP inducing its degradation by proteasomes under hypoxic conditions. Our in vivo tests showed that as a dual inhibitor, TEL03 dramatically inhibited tumor growth, and provided the evidence that targeting both HIF-1α and Stat3 simultaneously could be a promising strategy for breast and pancreatic cancer therapies.
Collapse
Affiliation(s)
- Han Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yongli Guan
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Naijie Jing
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Scherbakov AM, Stefanova LB, Sorokin DV, Semina SE, Berstein LM, Krasil'nikov MA. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack. Exp Cell Res 2013; 319:3150-9. [PMID: 23973669 DOI: 10.1016/j.yexcr.2013.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023]
Abstract
The tolerance of cancer cells to hypoxia depends on the combination of different factors--from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial-mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O2 atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK - the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well the level of AMPK phosphorylation may be considered as predictors of the tumor sensitivity to anti-angiogenic drugs.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Kashirskoye sh. 24, Moscow 115478, Russia.
| | | | | | | | | | | |
Collapse
|
8
|
Hiss DC, Fielding BC. Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Expert Opin Biol Ther 2012; 12:1427-47. [PMID: 22788715 DOI: 10.1517/14712598.2012.707183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) occupy a strategic niche in the dynamic era of biological and gene therapy of human cancers. However, the use of OVs is the subject of close scrutiny due to impediments such as the insufficiency of patient generalizations posed by heterogeneous tumor responses to treatment, inherent or potentially lethal viral pathogenicities, unanticipated host- or immune-related adverse effects, and the emergence of virus-resistant cancer cells. These challenges can be overcome by the design and development of more definitive (optimized, targeted, and individualized) cancer virotherapeutics. AREAS COVERED The translation of current knowledge and recent innovations into rational treatment prospects hinges on an iterative loop of variables pertaining to genetically engineered viral oncolytic efficacy and safety profiles, mechanism-of-action data, potencies of synergistic oncolytic viral combinations with conventional tumor, immuno-, chemo-, and radiation treatment modalities, optimization of the probabilities of treatment successes in heterogeneous (virus-sensitive and -resistant) tumor cell populations by mathematical modeling, and lessons learned from preclinical studies and human clinical trials. EXPERT OPINION In recent years, it has become increasingly clear that proof-of-principle is critical for the preclinical optimization of oncolytic viruses to target heterogeneous forms of cancer and to prioritize current concerns related to the efficacy and safety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Donavon C Hiss
- University of the Western Cape, Department of Medical Biosciences, Molecular Oncology Research Laboratory, Bellville, 7535, South Africa.
| | | |
Collapse
|
9
|
Reddy KR, Guan Y, Qin G, Zhou Z, Jing N. Combined treatment targeting HIF-1α and Stat3 is a potent strategy for prostate cancer therapy. Prostate 2011; 71:1796-809. [PMID: 21480310 DOI: 10.1002/pros.21397] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/16/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND The Stat3 pathway and the hypoxia-sensing pathway are both up-regulated in prostate cancer. Stat3 is a specific regulator of pro-carcinogenic inflammation and represents a promising therapeutic target. Hypoxia-inducible factor-1 (HIF-1)α, which mediates the cellular response to hypoxia, has been demonstrated to be over-expressed in many human cancers and is associated with poor prognosis and treatment failure in clinic. To develop a potent strategy to increase therapeutic efficacy and reduce drug resistance in prostate cancer therapy, we combined two anti-cancer agents: T40214 (a p-Stat3 inhibitor) and JG244 (a HIF-1α inhibitor) together to treat nude mice bearing human prostate tumor (DU145) and immunocompetent mice (C57BL/6) bearing murine prostate tumor (TRAMP-C2). METHODS We employed in vitro and in vivo assays, including Western blots, cell cycle analysis, immunohistochemistry, TUNEL and xenograft models to determine the drug efficacy and mechanism of combination treatment of T40214 and JG244. RESULTS We found that compared to treatment by T40214 or JG244 alone, the combination treatment using T40214 and JG244 together significantly suppressed growth of human or murine prostate tumors. Also, compared with apoptotic cells induced by T40214 or JG244 alone, the combined treatment greatly increased apoptosis in DU145 (P < 0.006) and TRAMP-C2 tumors (P < 0.008). CONCLUSIONS Our results suggested that combination treatment including a HIF-1α/2α inhibitor not only has therapeutic efficacy in targeting HIF-1α/2α, but also could reduce the hypoxia-induced drug resistance to other therapies (e.g., T40214) and enhance drug efficacy. This approach could make prostate cancer treatments more effective.
Collapse
|
10
|
Flamant L, Notte A, Ninane N, Raes M, Michiels C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Mol Cancer 2010; 9:191. [PMID: 20626868 PMCID: PMC3098009 DOI: 10.1186/1476-4598-9-191] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 07/13/2010] [Indexed: 11/16/2022] Open
Abstract
Background Hypoxia is a hallmark of solid tumors and is associated with metastases, therapeutic resistance and poor patient survival. Results In this study, we showed that hypoxia protected MDA-MB-231 breast cancer cells against paclitaxel- but not epirubicin-induced apoptosis. The possible implication of HIF-1 and AP-1 in the hypoxia-induced anti-apoptotic pathway was investigated by the use of specific siRNA. Specific inhibition of the expression of these two transcription factors was shown to increase apoptosis induced by chemotherapeutic agents under hypoxia indicating an involvement of HIF-1 and AP-1 in the anti-apoptotic effect of hypoxia. After HIF-1 specific inhibition and using TaqMan Human Apoptosis Array, 8 potential HIF-1 target genes were identified which could take part in this protection. Furthermore, Mcl-1 was shown to be a potential AP-1 target gene which could also participate to the hypoxia-induced chemoresistance. Conclusions Altogether, these data highlight two mechanisms by which hypoxia could mediate its protective role via the activation of two transcription factors and, consecutively, changes in gene expression encoding different anti- and pro-apoptotic proteins.
Collapse
Affiliation(s)
- Lionel Flamant
- Laboratory of Biochemistry and cellular Biology (URBC), NARILIS - NAmur Research Institute for LIfe Sciences - FUNDP-University of Namur, 5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
11
|
Saito K, Shirasawa H, Isegawa N, Shiiba M, Uzawa K, Tanzawa H. Oncolytic virotherapy for oral squamous cell carcinoma using replication-competent viruses. Oral Oncol 2009; 45:1021-7. [DOI: 10.1016/j.oraloncology.2009.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/29/2009] [Accepted: 09/02/2009] [Indexed: 01/02/2023]
|
12
|
|
13
|
Gomes EM, Rodrigues MS, Phadke AP, Butcher LD, Starling C, Chen S, Chang D, Hernandez-Alcoceba R, Newman JT, Stone MJ, Tong AW. Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin Cancer Res 2009; 15:1317-25. [PMID: 19228733 DOI: 10.1158/1078-0432.ccr-08-1360] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CD40 ligand (CD40L, CD154) plays a central role in immunoregulation and also directly modulates epithelial cell growth and differentiation. We previously showed that the CD40 receptor is commonly expressed in primary breast cancer tissues. In this proof-of-principle study, we examined the breast cancer growth-regulatory activities of an oncolytic adenoviral construct carrying the CD40L transgene (AdEHCD40L). EXPERIMENTAL DESIGN In vitro and in vivo evaluations were carried out on AdEHCD40L to validate selective viral replication and CD40L transgene activity in hypoxia inducing factor-1alpha and estrogen receptor-expressing human breast cancer cells. RESULTS AdEHCD40L inhibited the in vitro growth of CD40+ human breast cancer lines (T-47D, MDA-MB-231, and BT-20) by up to 80% at a low multiplicity of infection of 1. Incorporation of the CD40L transgene reduced the effective dose needed to achieve 50% growth inhibition (ED50) by approximately 10-fold. In contrast, viral and transgene expression of AdEHCD40L, as well its cytotoxicity, was markedly attenuated in nonmalignant cells. Intratumoral injections with AdEHCD40L reduced preexisting MDA-MB-231 xenograft growth in severe combined immunodeficient mice by >99% and was significantly more effective (P<0.003) than parental virus AdEH (69%) or the recombinant CD40L protein (49%). This enhanced antitumor activity correlated with cell cycle blockade and increased apoptosis in AdEHCD40L-infected tumor cells. CONCLUSIONS These novel findings, together with the previously known immune-activating features of CD40L, support the potential applicability of AdEHCD40L for experimental treatment of human breast cancer.
Collapse
Affiliation(s)
- Erica M Gomes
- Cancer Immunology Research Laboratory and Department of Pathology, Baylor Sammons Cancer Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|