1
|
Ingthorsson S, Traustadottir GA, Gudjonsson T. Breast Morphogenesis: From Normal Development to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:29-44. [PMID: 39821019 DOI: 10.1007/978-3-031-70875-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human breast gland is composed of branching epithelial ducts that culminate in milk-producing units known as terminal duct lobular units (TDLUs). The epithelial compartment comprises an inner layer of luminal epithelial cells (LEP) and an outer layer of contractile myoepithelial cells (MEP). Both LEP and MEP arise from a common stem cell population. The epithelial compartment undergoes dynamic branching morphogenesis and remodelling, which expands the surface area for milk production. The epithelial remodelling that starts at the onset of menarche is largely under hormonal control, first and foremost by estrogen and progesterone from ovaries, the production of which is stimulated by pituitary-derived hormones. Menopause leads to a significant decline in estrogen and progesterone levels, resulting in involution and senescence of the breast epithelium. The branching morphogenesis involves developmental events such as epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). EMT and MET confer plasticity to the epithelial compartment enabling the migration of epithelial cells through the stroma and restoration of the epithelial phenotype. In the normal breast, the stroma, including the basement membrane (BM), collagen-rich extracellular matrix, and various stromal cells, supports the correct histoarchitecture of the glandular tree. However, in cancer, the stroma can acquire tumour-promoting properties and is referred to as the tumour microenvironment. This chapter will explore the developmental processes including branching morphogenesis in the normal breast gland and discuss the lineage relationship between LEPS and MEPs and their interactions with the surrounding stroma in the normal and neoplastic breast gland. Finally, we will review various in vitro and in vivo models employed in mammary gland research.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Faculty of Nursing and Midwifery, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland.
| |
Collapse
|
2
|
Babaeenezhad E, Abdolvahabi Z, Asgharzadeh S, Abdollahi M, Shakeri S, Moradi Sarabi M, Yarahmadi S. Potential function of microRNA miRNA-206 in breast cancer pathogenesis: Mechanistic aspects and clinical implications. Pathol Res Pract 2024; 260:155454. [PMID: 39002434 DOI: 10.1016/j.prp.2024.155454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Breast cancer (BC) is a major public health problem that affects women worldwide. Growing evidence has highlighted the role of miRNA-206 in BC pathogenesis. Changes in its expression have diagnostic and prognostic potential as they are associated with clinicopathological parameters, including lymph node metastasis, overall survival, tumor size, metastatic stage, resistance to chemotherapy, and recurrence. In the present study, we summarized, assessed, and discussed the most recent understanding of the functions of miRNA-206 in BC. Unexpectedly, miRNA-206 was found to control both oncogenic and tumor-suppressive pathways. We also considered corresponding downstream effects and upstream regulators. Finally, we addressed the diagnostic and prognostic value of miRNA-206 and its potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Abdolvahabi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sahar Asgharzadeh
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masume Abdollahi
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Shakeri
- Cellular and Molecular Research Centre, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Moradi Sarabi
- Hepatities Research Center, Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sahar Yarahmadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Hussen BM, Abdullah KH, Abdullah SR, Majeed NM, Mohamadtahr S, Rasul MF, Dong P, Taheri M, Samsami M. New insights of miRNA molecular mechanisms in breast cancer brain metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:645-660. [PMID: 37818447 PMCID: PMC10560790 DOI: 10.1016/j.ncrna.2023.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Khozga Hazhar Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | | | - Sayran Mohamadtahr
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sepúlveda F, Mayorga-Lobos C, Guzmán K, Durán-Jara E, Lobos-González L. EV-miRNA-Mediated Intercellular Communication in the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:13085. [PMID: 37685891 PMCID: PMC10487525 DOI: 10.3390/ijms241713085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer research has prioritized the study of the tumor microenvironment (TME) as a crucial area of investigation. Understanding the communication between tumor cells and the various cell types within the TME has become a focal point. Bidirectional communication processes between these cells support cellular transformation, as well as the survival, invasion, and metastatic dissemination of tumor cells. Extracellular vesicles are lipid bilayer structures secreted by cells that emerge as important mediators of this cell-to-cell communication. EVs transfer their molecular cargo, including proteins and nucleic acids, and particularly microRNAs, which play critical roles in intercellular communication. Tumor-derived EVs, for example, can promote angiogenesis and enhance endothelial permeability by delivering specific miRNAs. Moreover, adipocytes, a significant component of the breast stroma, exhibit high EV secretory activity, which can then modulate metabolic processes, promoting the growth, proliferation, and migration of tumor cells. Comprehensive studies investigating the involvement of EVs and their miRNA cargo in the TME, as well as their underlying mechanisms driving tumoral capacities, are necessary for a deeper understanding of these complex interactions. Such knowledge holds promise for the development of novel diagnostic and therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Francisca Sepúlveda
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
| | - Cristina Mayorga-Lobos
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Kevin Guzmán
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Eduardo Durán-Jara
- Subdepartamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago 7780050, Chile;
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
| |
Collapse
|
5
|
Iqbal A, Yu H, Jiang P, Zhao Z. Deciphering the Key Regulatory Roles of KLF6 and Bta-miR-148a on Milk Fat Metabolism in Bovine Mammary Epithelial Cells. Genes (Basel) 2022; 13:genes13101828. [PMID: 36292712 PMCID: PMC9602136 DOI: 10.3390/genes13101828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate the expression of their target genes involved in many cellular functions at the post-transcriptional level. Previously, bta-miR-148a showed significantly high expression in bovine mammary epithelial cells (BMECs) of Chinese Holstein cows producing high milk fat compared to those with low milk fat content. Here, we investigated the role of bta-miR-148a through targeting Krüppel-like factor 6 (KLF6) and further analyzed the role of KLF6 in regulating fat metabolism through targeting PPARA, AMPK/mTOR/PPARG, and other fat marker genes in BMECs of Chinese Holstein. The bioinformatics analysis showed that the 3’ UTR of KLF6 mRNA possesses the binding sites for bta-miR-148a, which was further verified through dual-luciferase reporter assay. The BMECs were transfected with bta-miR-148a-mimic, inhibitor, and shNC, and the expression of KLF6 was found to be negatively regulated by bta-miR-148a. Moreover, the contents of triglyceride (TG), and cholesterol (CHO) in BMECs transfected with bta-miR-148a-mimic were significantly lower than the contents in BMECs transfected with bta-miR-148a-shNC. Meanwhile, the TG and CHO contents were significantly increased in BMECs transfected with bta-miR-148a-inhibitor than in BMECs transfected with bta-miR-148a-shNC. In addition, the TG and CHO contents were significantly decreased in BMECs upon the down-regulation of KLF6 through transfection with pb7sk-KLF6-siRNA1 compared to the control group. Contrarily, when KLF6 was overexpressed in BMECs through transfection with pBI-CMV3-KLF6, the TG and CHO contents were significantly increased compared to the control group. Whereas, the qPCR and Western blot evaluation of PPARA, AMPK/mTOR/PPARG, and other fat marker genes revealed that all of the genes were considerably down-regulated in the KLF6-KO-BMECs compared to the normal BMECs. Taking advantage of deploying new molecular markers and regulators for increasing the production of better-quality milk with tailored fat contents would be the hallmark in dairy sector. Hence, bta-miR-148a and KLF6 are potential candidates for increased milk synthesis and the production of valuable milk components in dairy cattle through marker-assisted selection in molecular breeding. Furthermore, this study hints at the extrapolation of a myriad of functions of other KLF family members in milk fat synthesis.
Collapse
|
6
|
Functional Role of circRNAs in the Regulation of Fetal Development, Muscle Development, and Lactation in Livestock. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5383210. [PMID: 33688493 PMCID: PMC7914090 DOI: 10.1155/2021/5383210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/23/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
circRNAs are a class of endogenous noncoding RNA molecules with closed loop structures. They are mainly responsible for regulating gene expression in eukaryotic cells. With the emergence of high-throughput RNA sequencing (RNA-Seq) and new types of bioinformatics tools, thousands of circRNAs have been discovered, making circRNA one of the research hotspots. Recent studies have shown that circRNAs play an important regulatory role in the growth, reproduction, and formation of livestock products. They can not only regulate mammalian fetal growth and development but also have important regulatory effects on livestock muscle development and lactation. In this review, we briefly introduce the putative biogenic pathways and regulatory functions of circRNA and highlight our understanding of circRNA and its latest advances in fetal development, muscle development, and lactation biogenesis as well as expression in livestock. This review will provide a theoretical basis for the research and development of related industries.
Collapse
|
7
|
Wang HY, Liu YN, Wu SG, Hsu CL, Chang TH, Tsai MF, Lin YT, Shih JY. MiR-200c-3p suppression is associated with development of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer via a mediating epithelial-to-mesenchymal transition (EMT) process. Cancer Biomark 2021; 28:351-363. [PMID: 32417760 DOI: 10.3233/cbm-191119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND EGFR-mutant lung cancer inevitably develops resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). OBJECTIVE To investigate the clinical relevance of microRNAs (miRNAs) in TKI therapy response and resistance. METHODS We performed a miRNA PCR array analysis and used The Cancer Genome Atlas (TCGA) database to identify potential miRNAs related to EGFR TKIs resistance. We then correlated miRNA expression in 70 surgical and 50 malignant pleural effusion specimens with patient outcomes in those with non-small cell lung carcinoma. Molecular manipulation was performed in EGFR mutant lung cancer cells to assess the effect of miR-200c-3p on cell migratory ability and EGFR-TKI sensitivity. RESULTS We identified miR-200c-3p and miR-203a-3p as potential EGFR TKI resistance regulators via their modulation of epithelial-to-mesenchymal transition (EMT). MiR-200c-3p and miR-203a-3p were down-regulated in EGFR TKI-resistant cell lines. Progression-free survival (PFS) with EGFR-TKI treatment of patients with high miR-200c-3p expression, but not miR-203a-3p, in the specimens was significantly longer than that of patients with low expression. MiR-200c-3p overexpression inhibited the EMT process in EGFR TKI resistance cell lines and promoted cell death. MiR-200c-3p silencing in EGFR TKI sensitive cell lines increased drug resistance. CONCLUSION MiR-200c-3p plays a role in sensitivity to EGFR TKIs via modulating EMT process.
Collapse
Affiliation(s)
- Hsin-Yi Wang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Thoracic Medicine Center, Department of Medicine and Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Hua Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Feng Tsai
- Department of Biomedical Sciences, Da-Yeh University, Changhua, Taiwan
| | - Yen-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Cheng Z, Wei W, Wu Z, Wang J, Ding X, Sheng Y, Han Y, Wu Q. ARPC2 promotes breast cancer proliferation and metastasis. Oncol Rep 2019; 41:3189-3200. [PMID: 31002363 PMCID: PMC6488984 DOI: 10.3892/or.2019.7113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
Actin-related protein 2/3 complex (ARPC2) is an actin‑binding component involved in the regulation of actin polymerization. It mediates the formation of branched actin networks and contacts the mother actin filament. Migration and invasion are key processes which enable tumor cells to infiltrate blood vessels or lymphatic vessels, and the actin pathway plays a very important role. Given that ARPC2 is critical to this progression, the present study focused on ARPC2 activity in breast cancer (BrCa) cell invasion and migration. Limited data are available on the expression and role of ARPC2 proteins in breast carcinomas. We screened the Oncomine database for messenger RNAs (mRNAs) that are upregulated in BrCa and found that ARPC2 was one of the most consistently involved mRNAs in BrCa. The analysis of immunohistochemical data revealed that ARPC2 expression was higher in breast cancerous tissues than in adjacent non‑cancerous tissues. In addition, ARPC2 was highly associated with the tumor stage, nodal metastasis, and overall survival of patients with BrCa. We performed siRNA‑ARPC2 transfection to investigate the effect of ARPC2 on the proliferation, migration, invasion and arrest of BrCa cells. It was revealed that ectopic ARPC2 expression significantly upregulated N‑cadherin, vimentin, ZEB1, MMP‑9 and MMP‑3 expression and also activated the TGF‑β pathway to contribute to epithelial‑mesenchymal transition (EMT). These results collectively indicated that ARPC2 promoted the tumorigenesis of breast carcinoma and the initiation of EMT. Therefore, ARPC2 was revealed to be a potential therapeutic target in patients with BrCa.
Collapse
Affiliation(s)
- Zhongle Cheng
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Wei
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhengshen Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaojuan Ding
- Department of Microbiology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Youjing Sheng
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yinli Han
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiang Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Sánchez-Vásquez E, Bronner ME, Strobl-Mazzulla PH. Epigenetic inactivation of miR-203 as a key step in neural crest epithelial-to-mesenchymal transition. Development 2019; 146:dev.171017. [PMID: 30910825 DOI: 10.1242/dev.171017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/15/2019] [Indexed: 01/01/2023]
Abstract
miR-203 is a tumor-suppressor microRNA with known functions in cancer metastasis. Here, we explore its normal developmental role in the context of neural crest development. During the epithelial-to-mesenchymal transition of neural crest cells to emigrate from the neural tube, miR-203 displays a reciprocal expression pattern with key regulators of neural crest delamination, Phf12 and Snail2, and interacts with their 3'UTRs. We show that ectopic maintenance of miR-203 inhibits neural crest migration in chick, whereas its functional inhibition using a 'sponge' vector or morpholinos promotes premature neural crest delamination. Bisulfite sequencing further shows that epigenetic repression of miR-203 is mediated by the de novo DNA methyltransferase DNMT3B, the recruitment of which to regulatory regions on the miR-203 locus is directed by SNAIL2 in a negative-feedback loop. These findings reveal an important role for miR-203 in an epigenetic-microRNA regulatory network that influences the timing of neural crest delamination.
Collapse
Affiliation(s)
- Estefanía Sánchez-Vásquez
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Argentina
| | - Marianne E Bronner
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Argentina
| |
Collapse
|
10
|
Sossey-Alaoui K, Pluskota E, Szpak D, Schiemann WP, Plow EF. The Kindlin-2 regulation of epithelial-to-mesenchymal transition in breast cancer metastasis is mediated through miR-200b. Sci Rep 2018; 8:7360. [PMID: 29743493 PMCID: PMC5943603 DOI: 10.1038/s41598-018-25373-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the main cause of death in cancer patients, including breast cancer (BC). Despite recent progress in understanding the biological and molecular determinants of BC metastasis, effective therapeutic treatments are yet to be developed. Among the multitude of molecular mechanisms that regulate cancer metastasis, the epithelial-to-mesenchymal transition (EMT) program plays a key role in the activation of the biological steps leading to the metastatic phenotype. Kindlin-2 has been associated with the pathogenesis of several types of cancers, including BC. The role of Kindlin-2 in the regulation of BC metastasis, and to a lesser extent in EMT is not well understood. In this study, we show that Kindlin-2 is closely associated with the development of the metastatic phenotype in BC. We report that knockout of Kindlin-2 in either human or mouse BC cells, significantly inhibits metastasis in both human and mouse models of BC metastasis. We also report that the Kindlin-2-mediated inhibition of metastasis is the result of inhibition of expression of key molecular markers of the EMT program. Mechanistically, we show that miR-200b, a master regulator of EMT, directly targets and inhibits the expression of Kindlin-2, leading to the subsequent inhibition of EMT and metastasis. Together, our data support the targeting of Kindlin-2 as a therapeutic strategy against BC metastasis.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dorota Szpak
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Jin T, Suk Kim H, Ki Choi S, Hye Hwang E, Woo J, Suk Ryu H, Kim K, Moon A, Kyung Moon W. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget 2018; 8:32769-32782. [PMID: 28427146 PMCID: PMC5464826 DOI: 10.18632/oncotarget.15680] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/12/2017] [Indexed: 11/25/2022] Open
Abstract
The microRNA-200 (miR-200) family is associated with tumor metastasis and poor patient prognosis. We found that miR-200c/141 cluster overexpression upregulated SerpinB2 in the MDA-MB-231 triple-negative (TN) breast cancer cell line. We observed transcription factor (c-Jun, c-Fos, and FosB) upregulation, nuclear localization of c-Jun, and increased SerpinB2 promoter-directed chloramphenicol acetyltransferase activity in miR-200c/141 cluster-overexpressing cells relative to controls. Additionally, miR-124a and miR-26b, which directly target SepinB2, were downregulated compared to controls. In mouse xenograft models, miR-200c/141 cluster overexpression promoted lymph node and lung metastasis, and siRNA-mediated SerpinB2 knockdown decreased lung metastasis, suggesting that SerpinB2 mediates miR-200c/141-induced lung metastasis. We also explored the clinical significance of SerpinB2 protein status through analysis of primary breast tumor samples and The Cancer Genome Atlas (TCGA) data. High SerpinB2 levels were associated with reduced survival and increased lymph node metastasis in breast cancer patients. SerpinB2 was overexpressed in the TN breast cancer subtype as compared to the luminal subtype. The present study demonstrates that SerpinB2 promotes miR-200c/141 cluster overexpression-induced breast cancer cell metastasis, and SerpinB2 overexpression correlates with increased metastatic potential and unfavorable outcomes in breast cancer patients. SerpinB2 may be a useful biomarker for assessing metastasis risk in breast cancer patients.
Collapse
Affiliation(s)
- Tiefeng Jin
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea.,Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Sul Ki Choi
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul National University, Jongno-gu, Seoul 03080, Korea
| | - Eun Hye Hwang
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Jisu Woo
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea
| | - Aree Moon
- Duksung Innovative Drug Center College of Pharmacy, Duksung Women's University, Dobong-gu, Seoul 01369, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Jongno-gu, Seoul 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul National University, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
12
|
Pan JY, Sun CC, Bi ZY, Chen ZL, Li SJ, Li QQ, Wang YX, Bi YY, Li DJ. miR-206/133b Cluster: A Weapon against Lung Cancer? MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:442-449. [PMID: 28918043 PMCID: PMC5542379 DOI: 10.1016/j.omtn.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022]
Abstract
Lung cancer is a deadly disease that ends numerous lives around the world. MicroRNAs (miRNAs) are a group of non-coding RNAs involved in a variety of biological processes, such as cell growth, organ development, and tumorigenesis. The miR-206/133b cluster is located on the human chromosome 6p12.2, which is essential for growth and rebuilding of skeletal muscle. The miR-206/133b cluster has been verified to be dysregulated and plays a crucial role in lung cancer. miR-206 and miR-133b participate in lung tumor cell apoptosis, proliferation, migration, invasion, angiogenesis, drug resistance, and cancer treatment. The mechanisms are sophisticated, involving various target genes and molecular pathways, such as MET, EGFR, and the STAT3/HIF-1α/VEGF signal pathway. Hence, in this review, we summarize the role and potential mechanisms of the miR-206/133b cluster in lung cancer.
Collapse
Affiliation(s)
- Jing-Yu Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan 430079 Hubei, P.R. China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Shu-Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China; Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Qing-Qun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yu-Xuan Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yong-Yi Bi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| |
Collapse
|
13
|
Tang KQ, Wang YN, Zan LS, Yang WC. miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma. J Dairy Sci 2017; 100:4102-4112. [PMID: 28284697 DOI: 10.3168/jds.2016-12264] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
Abstract
Growing evidence has revealed that microRNA are central elements in milk fat synthesis in mammary epithelial cells. A negative regulator of adipocyte fat synthesis, miR-27a has been reported to be involved in the regulation of milk fat synthesis in goat mammary epithelial cells; however, the regulatory role of miR-27a in bovine milk fat synthesis remains unclear. In the present study, primary bovine mammary epithelial cells (BMEC) were harvested from mid-lactation cows and cultured in Dulbecco's modified Eagle's medium/F-12 medium with 10% fetal bovine serum, 5 μg/mL of insulin, 1 μg/mL of hydrocortisone, 2 μg/mL of prolactin, 1 μg/mL of progesterone, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. We found that the overexpression of miR-27a significantly suppressed lipid droplet formation and decreased the cellular triacylglycerol (TAG) levels, whereas inhibition of miR-27a resulted in a greater lipid droplet formation and TAG accumulation in BMEC. Meanwhile, overexpression of miR-27a inhibited mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein beta (C/EBPβ), perilipin 2 (PLIN2), and fatty acid binding protein 3 (FABP3), whereas miR-27a downregulation increased PPARG, C/EBPβ, FABP3, and CCAAT enhancer binding protein alpha (C/EBPα) mRNA expression. Furthermore, Western blot analysis revealed the protein level of PPARG in miR-27a mimic and inhibitor transfection groups to be consistent with the mRNA expression response. Moreover, luciferase reporter assays verified that PPARG was the direct target of miR-27a. In summary, these results indicate that miR-27a has the ability to control TAG synthesis in BMEC via targeting PPARG, suggesting that miR-27a could potentially be used to improve beneficial milk components in dairy cows.
Collapse
Affiliation(s)
- K Q Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y N Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - L S Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - W C Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Wang DJ, Wang CM, Wang YT, Qiao H, Fang LQ, Wang ZB. Lactation-Related MicroRNA Expression in Microvesicles of Human Umbilical Cord Blood. Med Sci Monit 2016; 22:4542-4554. [PMID: 27885249 PMCID: PMC5124433 DOI: 10.12659/msm.901695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background The complex process by which lactation is initiated upon neonate delivery remains incompletely understood. Microvesicles (MVs) can transmit microRNAs (miRNAs) into recipient cells to influence cell function, and recent studies have identified miRNAs essential for mammary gland development and lactation. This study aimed to investigate the expression of lactation-related miRNAs in MVs isolated from human umbilical cord blood immediately after delivery. Material/Methods Umbilical cord blood samples were collected from 70 healthy pregnant women, and MVs were isolated through differential centrifugation and characterized by transmission electron microscopy, Western blotting, and nanoparticle tracking analysis. Lactation-related miRNAs were screened using bioinformatics tools for miRNA target prediction, gene ontology, and signaling pathway analyses. miRNA PCR arrays were used for miRNA expression analysis, and the results were validated by real-time PCR. Upon exposure of HBL-100 human mammary epithelial cells to MVs, MV uptake was examined by fluorescence confocal microscopy and β-casein secretion was detected by ELISA. Results Spherical MVs extracted from umbilical cord blood expressed CD63 and had an average diameter of 167.0±77.1 nm. We profiled 337 miRNAs in human umbilical cord blood MVs and found that 85 were related to lactation by bioinformatics analysis. The 25 most differentially expressed lactation-related miRNAs were validated by real-time PCR. MV uptake by HBL-100 cells was after 4 h in culture, and significantly increased secretion of β-casein was observed after 96 h from cells exposed to MVs (P<0.05). Conclusions Umbilical cord blood MVs contain many lactation-related miRNAs and can induce β-casein production by HBL-100 cells in vitro. Thus, umbilical cord blood MVs may mediate secretion of β-casein through miRNAs, thereby playing an important role in fetal-maternal crosstalk.
Collapse
Affiliation(s)
- De-Jing Wang
- State Key Laboratory of Ultrasound Engineering in Medicine, Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (mainland)
| | - Chen-Meiyi Wang
- State Key Laboratory of Ultrasound Engineering in Medicine, Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (mainland)
| | - Yi-Ting Wang
- State Key Laboratory of Ultrasound Engineering in Medicine, Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (mainland)
| | - Hai Qiao
- State Key Laboratory of Ultrasound Engineering in Medicine, Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (mainland)
| | - Liao-Qiong Fang
- State Key Laboratory of Ultrasound Engineering in Medicine, Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (mainland)
| | - Zhi-Biao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine, Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
15
|
Qu B, Qiu Y, Zhen Z, Zhao F, Wang C, Cui Y, Li Q, Zhang L. Computational identification and characterization of novel microRNA in the mammary gland of dairy goat (Capra hircus). J Genet 2016; 95:625-37. [PMID: 27659334 DOI: 10.1007/s12041-016-0674-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many studies have indicated that microRNAs (miRNAs) influence the development of the mammary gland by posttranscriptionally affecting their target genes. The objective of this research was to identify novel miRNAs in the mammary gland of dairy goats with a bioinformatics approach that was based on expressed sequence tag (EST) and genome survey sequence (GSS) analyses. We applied all known major mammals, miRNAs to search against the goat EST and GSS databases for the first time to identify new miRNAs. We, then, validated these newly predicted miRNAs with stem-loop reverse transcription followed by a SYBR Green polymerase chain reaction assay. Finally, 29 mature miRNAs were identified and verified, and of these, 14 were grouped into 13 families based on seed sequence identity and 85 potential target genes of newly verified miRNAs were subsequently predicted, most of which seemed to encode the proteins participating in regulation of metabolism, signal transduction, growth and development. The predicting accuracy of the new miRNAs was 70.37%, which confirmed that the methods used in this study were efficient and reliable. Detailed analyses of the sequence characteristics of the novel miRNAs of the goat mammary gland were performed. In conclusion, these results provide a reference for further identification of miRNAs in animals without a complete genome and thus improve the understanding of miRNAs in the caprine mammary gland.
Collapse
Affiliation(s)
- Bo Qu
- Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahmed RA, Alawin OA, Sylvester PW. γ-Tocotrienol reversal of epithelial-to-mesenchymal transition in human breast cancer cells is associated with inhibition of canonical Wnt signalling. Cell Prolif 2016; 49:460-70. [PMID: 27323693 DOI: 10.1111/cpr.12270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Frizzled-7 (FZD7) receptor-dependent activation of the canonical Wnt/β-catenin pathway plays a crucial role in epithelial-to-mesenchymal transition (EMT) and breast cancer metastasis. FZD7 and its co-receptor, low-density lipoprotein receptor-related protein 6 (LRP6), are highly expressed in MDA-MB-231 and T-47D breast cancer cells, and endogenous ligands for FZD7 include Wnt3a and Wnt5a/b. γ-Tocotrienol, a natural isoform of vitamin E, inhibits human breast cancer cell proliferation and EMT. Here, studies have been conducted to investigate the role of the canonical Wnt pathway in mediating inhibitory effects of γ-tocotrienol on EMT in human breast cancer cells. MATERIALS AND METHODS MDA-MB-231, T-47D and MCF-10A cells were maintained in serum-free defined media containing selected doses of γ-tocotrienol. Cell viability was determined using the MTT colorimetric assay, Western blot analysis was used to measure protein expression and the wound-healing assay was employed to study cell mobility and migration. Immunohistochemical fluorescence staining visualized expression and localization of EMT cell markers. RESULTS γ-Tocotrienol was found to induce dose-responsive inhibition of MDA-MB-231 and T-47D cell growth at doses that had no effect on immortalized normal MCF-10A mammary epithelial cells. These growth inhibitory effects were associated with suppression in canonical Wnt signalling, reversal of EMT and significant reduction in breast cancer cell motility. CONCLUSIONS γ-Tocotrienol suppression of metastatic breast cancer cell proliferation and EMT was associated with suppression of the canonical Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- R A Ahmed
- School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - O A Alawin
- School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - P W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
17
|
Fomeshi MR, Ebrahimi M, Mowla SJ, Khosravani P, Firouzi J, Khayatzadeh H. Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell Mol Biol Lett 2016. [PMID: 26208390 DOI: 10.1515/cmble-2015-0025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small non-coding RNAs named microRNAs (miRNAs) modulate some functions and signaling pathways in skin epithelial cells and melanocytes. They also function as oncogenes or tumor suppressors in malignancies and tumor metastasis. We investigated the expression patterns of miRNAs, including miR-10b, 21, 200c, 373 and 520c, which regulate epithelial-to-mesenchymal transition (EMT) and metastasis in isolated cancer stem cells (CSCs) and non- CSCs. Six melanoma cell lines were tested for the expressions of stem cell markers. Melanoma stem cells were enriched via fluorescence-activated cell sorting (FACS) using the CD133 cell surface marker or spheroid culture. They were then characterized based on colony and sphere formation, and the expressions of stemness and EMT regulator genes and their invasion potential were assessed using real-time qRT-PCR and invasion assay. Our results indicate that cells enriched via sphere formation expressed all the stemness-related genes and had an enhanced number of colonies, spheres and invaded cells compared to cells enriched using the CD133 cell surface marker. Moreover, miRNAs controlling metastasis increased in the melanospheres. This may be related to the involvement of CSCs in the metastatic process. However, this must be further confirmed through the application of knockdown experiments. The results show that sphere formation is a useful method for enriching melanoma stem cells. Melanospheres were found to upregulate miR-10b, 21, 200c, 373 and 520c, so we suggest that they may control both metastasis and stemness potential.
Collapse
|
18
|
Sandhu GK, Milevskiy MJG, Wilson W, Shewan AM, Brown MA. Non-coding RNAs in Mammary Gland Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:121-153. [PMID: 26659490 DOI: 10.1007/978-94-017-7417-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.
Collapse
Affiliation(s)
- Gurveen K Sandhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Wesley Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
19
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
20
|
Bian Y, Lei Y, Wang C, Wang J, Wang L, Liu L, Liu L, Gao X, Li Q. Epigenetic Regulation of miR-29s Affects the Lactation Activity of Dairy Cow Mammary Epithelial Cells. J Cell Physiol 2015; 230:2152-63. [DOI: 10.1002/jcp.24944] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/23/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Yanjie Bian
- Research Department of Lactation Biology and Regulation of Mammary Gland Function; Northeast Agricultural University; Harbin 150030 China
| | - Yu Lei
- Research Department of Lactation Biology and Regulation of Mammary Gland Function; Northeast Agricultural University; Harbin 150030 China
| | - Chunmei Wang
- Key Laboratory of Dairy Science of Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| | - Jie Wang
- Key Laboratory of Dairy Science of Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| | - Lina Wang
- Research Department of Lactation Biology and Regulation of Mammary Gland Function; Northeast Agricultural University; Harbin 150030 China
| | - Lili Liu
- Key Laboratory of Dairy Science of Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| | - Lixin Liu
- Key Laboratory of Dairy Science of Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| | - Qingzhang Li
- Research Department of Lactation Biology and Regulation of Mammary Gland Function; Northeast Agricultural University; Harbin 150030 China
- Key Laboratory of Dairy Science of Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| |
Collapse
|
21
|
Duhachek-Muggy S, Zolkiewska A. ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer. BMC Cancer 2015; 15:93. [PMID: 25886595 PMCID: PMC4352249 DOI: 10.1186/s12885-015-1108-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022] Open
Abstract
Background ADAM12-L and ADAM12-S represent two major splice variants of human metalloproteinase-disintegrin 12 mRNA, which differ in their 3′-untranslated regions (3′UTRs). ADAM12-L, but not ADAM12-S, has prognostic and chemopredictive values in breast cancer. Expression levels of the two ADAM12 splice variants in clinical samples are highly discordant, suggesting post-transcriptional regulation of the ADAM12 gene. The miR-29, miR-30, and miR-200 families have potential target sites in the ADAM12-L 3′UTR and they may negatively regulate ADAM12-L expression. Methods miR-29b/c, miR-30b/d, miR-200b/c, or control miRNA mimics were transfected into SUM159PT, BT549, SUM1315MO2, or Hs578T breast cancer cells. ADAM12-L and ADAM12-S mRNA levels were measured by qRT-PCR, and ADAM12-L protein was detected by Western blotting. Direct targeting of the ADAM12-L 3′UTR by miRNAs was tested using an ADAM12-L 3′UTR luciferase reporter. The rate of ADAM12-L translation was evaluated by metabolic labeling of cells with 35S cysteine/methionine. The roles of endogenous miR-29b and miR-200c were tested by transfecting cells with miRNA hairpin inhibitors. Results Transfection of miR-29b/c mimics strongly decreased ADAM12-L mRNA levels in SUM159PT and BT549 cells, whereas ADAM12-S levels were not changed. ADAM12-L, but not ADAM12-S, levels were also significantly diminished by miR-200b/c in SUM1315MO2 cells. In Hs578T cells, miR-200b/c mimics impeded translation of ADAM12-L mRNA. Importantly, both miR-29b/c and miR-200b/c strongly decreased steady state levels of ADAM12-L protein in all breast cancer cell lines tested. miR-29b/c and miR-200b/c also significantly decreased the activity of an ADAM12-L 3′UTR reporter, and this effect was abolished when miR-29b/c and miR-200b/c target sequences were mutated. In contrast, miR-30b/d did not elicit consistent and significant effects on ADAM12-L expression. Analysis of a publicly available gene expression dataset for 100 breast tumors revealed a statistically significant negative correlation between ADAM12-L and both miR-29b and miR-200c. Inhibition of endogenous miR-29b and miR-200c in SUM149PT and SUM102PT cells led to increased ADAM12-L expression. Conclusions The ADAM12-L 3′UTR is a direct target of miR-29 and miR-200 family members. Since the miR-29 and miR-200 families play important roles in breast cancer progression, these results may help explain the different prognostic and chemopredictive values of ADAM12-L and ADAM12-S in breast cancer.
Collapse
Affiliation(s)
- Sara Duhachek-Muggy
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
22
|
Savagner P. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol 2015; 112:273-300. [PMID: 25733143 DOI: 10.1016/bs.ctdb.2014.11.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental cellular process occurring during early embryo development, including gastrulation and neural crest cell migration. It can be broken down in distinct functional steps: (1) loss of baso-apical polarization characterized by cytoskeleton, tight junctions, and hemidesmosomes remodeling; (2) individualization of cells, including a decrease in cell-cell adhesion forces, (3) emergence of motility, and (4) invasive properties, including passing through the subepithelial basement membrane. These phases occur in an uninterrupted process, without requiring mitosis, in an order and with a degree of completion dictated by the microenvironment. The whole process reflects the activation of specific transcription factor families, called EMT transcription factors. Several mechanisms can combine to induce EMT. Some are reversible, involving growth factors and cytokines and/or environmental signals including extracellular matrix and local physical conditions. Others are irreversible, such as genomic alterations during carcinoma progression, along a selective and irreversible clonal drift. In carcinomas, these signals can converge to initiate a metastable phenotype. In this state, similarly to activated keratinocytes during re-epithelialization, cells can initiate a cohort migration and engage into a transient and reversible EMT controlled by the local environment prior to efficient intravasation and metastasis. EMT transcription factors also participate in cancer progression by inducing apoptosis resistance and maintaining stem-like properties exposed in tumor recurrences. These properties, very important on a clinical point of view, are not intrinsically linked to EMT, but can share common pathways.
Collapse
Affiliation(s)
- Pierre Savagner
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Institut régional du cancer Université Montpellier1, Montpellier, France.
| |
Collapse
|
23
|
Tuomarila M, Luostari K, Soini Y, Kataja V, Kosma VM, Mannermaa A. Overexpression of microRNA-200c predicts poor outcome in patients with PR-negative breast cancer. PLoS One 2014; 9:e109508. [PMID: 25329395 PMCID: PMC4199599 DOI: 10.1371/journal.pone.0109508] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/07/2014] [Indexed: 12/12/2022] Open
Abstract
Micro-RNAs are small, noncoding RNAs that act as tumor suppressors or oncogenes. MiR-200c is a member of the miR-200 family; it is known to be dysregulated in invasive breast carcinoma. MiR-200c maintains the epithelial-mesenchymal transition and inhibits cell migration and invasion. Recent studies showed that miR-200c regulated steroid hormone receptors, estrogen receptors (ER), and progesterone receptors (PR). The present study aimed to detect miR-200c in 172 invasive breast carcinoma cases selected from a prospective cohort enrolled in Kuopio, Eastern Finland, between 1990 and 1995. MiR-200c expression was determined with relative q-PCR, and results were compared to clinicopathological variables and patient outcome. We found that PR status combined with miR-200c expression was a significant marker of outcome. High miR-200c expression was associated with reduced survival in PR-negative cases (n = 68); low miR-200c expression indicated reduced survival in PR-positive cases (n = 86) (Cox regression: P = 0.002, OR = 3.433; and P = 0.004, OR = 4.176, respectively). In PR-negative cases, high miR-200c expression was associated with shortened relapse-free survival (Cox regression: P = 0.001, OR = 3.613); increased local/distant recurrence (Logistic regression: P = 0.006, OR = 3.965); and more frequent distant metastasis (Logistic regression: P = 0.015, OR = 3.390). We also found that high grade and low stage tumors were positively correlated with high miR-200c expression (Logistic regression for high grade tumors: P = 0.002, OR = 2.791 and for high stage tumors: P = 0.035, OR = 0.285). Our results indicated that miR-200c may play a role in invasive breast carcinoma. Furthermore, miR-200c combined with PR status provided a refined predictor of outcome. In future, a larger study is required to confirm our results. This data may provide a basis for new research target-progesterone receptor-regulated microRNAs in breast cancer.
Collapse
Affiliation(s)
- Marie Tuomarila
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa Luostari
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ylermi Soini
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
24
|
MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat 2014; 147:39-49. [PMID: 25086633 DOI: 10.1007/s10549-014-3069-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/19/2014] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in the progression of breast cancer. Some miRNAs, especially the miR-200 family, miR-9, and miR-155 have been reported to be associated with epithelial-mesenchymal transition (EMT) and breast cancer stem cell (BCSC) phenotypes. This study was designed to evaluate the expression levels of these miRNAs in human breast cancer samples and analyzed their relationship with clinicopathologic features of the tumor including breast cancer subtype, EMT, BCSC phenotype, and prognosis. Expression levels of the miR-200 family, miR-9, and miR-155 were quantified using qRT-PCR. Breast cancer subtype, BCSC phenotype (CD44+/CD24- and ALDH1+), and expression of EMT markers (vimentin expression and E-cadherin loss) were evaluated by immunohistochemistry. miR-9 was more highly expressed in HER2+ and triple-negative subtypes than in luminal subtypes. Its expression level was significantly higher in tumors with high T stage, high histologic grade, p53 overexpression, and high proliferation index. Expression of miR-9 was also higher in tumors showing the CD44+/CD24- phenotype, vimentin expression, and E-cadherin loss. Furthermore, high level of miR-9 expression was found to be an independent prognostic factor for poor disease-free survival of the patients. Expression of miR-200a and miR-141 was highest in luminal A subtype, and miR-155 expression was highest in triple-negative subtype. Although the expression levels of some miR-200 family members and miR-155 showed difference with regard to EMT or BCSC phenotype, they were not associated with patients' prognosis. In conclusion, overexpression of miR-9 is found in tumors with aggressive phenotypes and is associated with poor prognosis in breast cancer, suggesting that it may serve as a potential biomarker for breast cancer progression and a target for treatment.
Collapse
|
25
|
Microenvironment, oncoantigens, and antitumor vaccination: lessons learned from BALB-neuT mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:534969. [PMID: 25136593 PMCID: PMC4065702 DOI: 10.1155/2014/534969] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
The tyrosine kinase human epidermal growth factor receptor 2 (HER2) gene is amplified in approximately 20% of human breast cancers and is associated with an aggressive clinical course and the early development of metastasis. Its crucial role in tumor growth and progression makes HER2 a prototypic oncoantigen, the targeting of which may be critical for the development of effective anticancer therapies. The setup of anti-HER2 targeting strategies has revolutionized the clinical outcome of HER2+ breast cancer. However, their initial success has been overshadowed by the onset of pharmacological resistance that renders them ineffective. Since the tumor microenvironment (TME) plays a crucial role in drug resistance, the design of more effective anticancer therapies should depend on the targeting of both cancer cells and their TME as a whole. In this review, starting from the successful know-how obtained with a HER2+ mouse model of mammary carcinogenesis, the BALB-neuT mice, we discuss the role of TME in mammary tumor development. Indeed, a deeper knowledge of antigens critical for cancer outbreak and progression and of the mechanisms that regulate the interplay between cancer and stromal cell populations could advise promising ways for the development of the best anticancer strategy.
Collapse
|
26
|
Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta Gen Subj 2014; 1840:2621-34. [PMID: 24561266 DOI: 10.1016/j.bbagen.2014.02.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial-mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM). SCOPE OF THE REVIEW Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer. MAJOR CONCLUSIONS Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal-epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET. GENERAL SIGNIFICANCE Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
27
|
Cufí S, Bonavia R, Vazquez-Martin A, Oliveras-Ferraros C, Corominas-Faja B, Cuyàs E, Martin-Castillo B, Barrajón-Catalán E, Visa J, Segura-Carretero A, Joven J, Bosch-Barrera J, Micol V, Menendez JA. Silibinin suppresses EMT-driven erlotinib resistance by reversing the high miR-21/low miR-200c signature in vivo. Sci Rep 2014; 3:2459. [PMID: 23963283 PMCID: PMC3748425 DOI: 10.1038/srep02459] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023] Open
Abstract
The flavolignan silibinin was studied for its ability to restore drug sensitivity to EGFR-mutant NSCLC xenografts with epithelial-to-mesenchymal transition (EMT)-driven resistance to erlotinib. As a single agent, silibinin significantly decreased the tumor volumes of erlotinib-refractory NSCLC xenografts by approximately 50%. Furthermore, the complete abrogation of tumor growth was observed with the co-treatment of erlotinib and silibinin. Silibinin fully reversed the EMT-related high miR-21/low miR-200c microRNA signature and repressed the mesenchymal markers SNAIL, ZEB, and N-cadherin observed in erlotinib-refractory tumors. Silibinin was sufficient to fully activate a reciprocal mesenchymal-to-epithelial transition (MET) in erlotinib-refractory cells and prevent the highly migratogenic phenotype of erlotinib-resistant NSCLC cells. Given that the various mechanisms of resistance to erlotinib result from EMT, regardless of the EGFR mutation status, a water-soluble, silibinin-rich milk thistle extract might be a suitable candidate therapy for upcoming clinical trials aimed at preventing or reversing NSCLC progression following erlotinib treatment.
Collapse
Affiliation(s)
- Sílvia Cufí
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee TS, Jeon HW, Kim YB, Kim YA, Kim MA, Kang SB. Aberrant microRNA expression in endometrial carcinoma using formalin-fixed paraffin-embedded (FFPE) tissues. PLoS One 2013; 8:e81421. [PMID: 24363810 PMCID: PMC3867308 DOI: 10.1371/journal.pone.0081421] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/12/2013] [Indexed: 12/15/2022] Open
Abstract
This study aimed to identify the candidate miRNAs in the carcinogenesis of endometrial carcinoma, and to explore whether FFPE material would be suitable for miRNA profiling. We identified the differences between miRNA expression profiles using human miRNA microarray in endometrioid endometrial adenocarcinomas (EECs) and normal endometria. Of those tested, miR-200a*, miR-200b*, miR-141, miR-182, and miR-205 were greatly enriched. The expressions of these five miRNAs were validated using quantitative real-time reverse transcription-PCR (qRT-PCR). We then performed qRT-PCR miR expression profiling in 30 FFPE specimens (20 EECs, 10 normal endometria) and re-confirmed the results of differential expression between cancer and normal tissue. Following this, we tested whether the specific inhibition of overexpressed miRNAs would alter chemosensitivity. In the in vitro cell viability assay, anti-miR200b* showed a trend toward enhanced cytotoxicity slightly in cisplatin compared to the negative control (p = 0.07). This information provided the candidate miRNAs for further confirmation of the role of miRNAs in the carcinogenesis of EECs, potentially serving as a diagnostic or therapeutic tool. FFPE specimens of endometrial tissues are suitable as a source for miRNA microarray profiling.
Collapse
Affiliation(s)
- Taek Sang Lee
- Department of Obstetrics and Gynecology, SMG–SNU Boramae Medical Center, Seoul, Korea
| | - Hye Won Jeon
- Department of Obstetrics and Gynecology, SMG–SNU Boramae Medical Center, Seoul, Korea
- * E-mail:
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young A. Kim
- Department of Pathology, SMG–SNU Boramae Medical Center, Seoul Korea
| | - Min A. Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Soon Beom Kang
- Department of Obstetrics and Gynecology, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
29
|
Sekar TV, Mohanram RK, Foygel K, Paulmurugan R. Therapeutic evaluation of microRNAs by molecular imaging. Am J Cancer Res 2013; 3:964-85. [PMID: 24396507 PMCID: PMC3881098 DOI: 10.7150/thno.4928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/22/2013] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) function as regulatory molecules of gene expression with multifaceted activities that exhibit direct or indirect oncogenic properties, which promote cell proliferation, differentiation, and the development of different types of cancers. Because of their extensive functional involvement in many cellular processes, under both normal and pathological conditions such as various cancers, this class of molecules holds particular interest for cancer research. MiRNAs possess the ability to act as tumor suppressors or oncogenes by regulating the expression of different apoptotic proteins, kinases, oncogenes, and other molecular mechanisms that can cause the onset of tumor development. In contrast to current cancer medicines, miRNA-based therapies function by subtle repression of gene expression on a large number of oncogenic factors, and therefore are anticipated to be highly efficacious. Given their unique mechanism of action, miRNAs are likely to yield a new class of targeted therapeutics for a variety of cancers. More than thousand miRNAs have been identified to date, and their molecular mechanisms and functions are well studied. Furthermore, they are established as compelling therapeutic targets in a variety of cellular complications. However, the notion of using them as therapeutic tool was proposed only recently, given that modern imaging methods are just beginning to be deployed for miRNA research. In this review, we present a summary of various molecular imaging methods, which are instrumental in revealing the therapeutic potential of miRNAs, especially in various cancers. Imaging methods have recently been developed for monitoring the expression levels of miRNAs and their target genes by fluorescence-, bioluminescence- and chemiluminescence-based imaging techniques. Mature miRNAs bind to the untranslated regions (UTRs) of the target mRNAs and regulate target genes expressions. This concept has been used for the development of fluorescent reporter-based imaging strategies to monitor the functional status of endogenous miRNAs, or the respective miRNAs transiently co-expressed in cells. Bioluminescence-based imaging strategies have been used to investigate various stages of miRNA processing and its involvement in different cellular processes. Similarly, chemiluminsecence methods were developed for in vitro miRNA imaging such as monitoring their therapeutic roles in various cancer cell lines.
Collapse
|
30
|
Changes in cell and tissue organization in cancer of the breast and colon. Curr Opin Cell Biol 2013; 26:87-95. [PMID: 24529250 DOI: 10.1016/j.ceb.2013.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 01/07/2023]
Abstract
Most cancers arise in epithelia, the tissue type that lines all body cavities. The organization of epithelia enables them to act as a barrier and perform vectorial transport of molecules between body compartments. Crucial for their organization and function is a highly specialized network of cell adhesion and polarity proteins aligned along the apical-basal axis. Comparing breast and intestinal tissue as examples of common cancer sites, reveals an important contribution of polarity proteins to the initiation and progression of cancer. Defects in polarity are induced directly by mutations in polarity proteins, but also indirectly by changes in the expression of specific microRNAs and altered transcriptional programs that drive cellular differentiation from epithelial to more mesenchymal characteristics. The latter is particularly important in the metastatic process.
Collapse
|
31
|
Samatov TR, Tonevitsky AG, Schumacher U. Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer 2013; 12:107. [PMID: 24053443 PMCID: PMC3848796 DOI: 10.1186/1476-4598-12-107] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process in embryonic development and metastases formation during malignant progression. This review focuses on transcriptional regulation, non-coding RNAs, alternative splicing events and cell adhesion molecules regulation during EMT. Additionally, we summarize the knowledge with regard to the small potentially druggable molecules capable of modulating EMT for cancer therapy.
Collapse
Affiliation(s)
- Timur R Samatov
- SRC Bioclinicum, Ugreshskaya str 2/85, Moscow 115088, Russia.
| | | | | |
Collapse
|
32
|
Abstract
The molecular mechanisms underlying cancer progression and metastasis are still poorly understood. In recent years, the epithelial-to-mesenchymal transition (EMT), a traditional phenomenon revealed in embryonic development, has been gradually accepted as a potential mechanism underlying cancer progression and metastasis. Many cell signaling pathways involved in development have been shown to contribute to EMT. An increasing number of genetic and epigenetic elements have been discovered, and their cross-talk relationship in EMT remains to be explored. In addition, accumulating experimental evidence suggests that EMT plays a critical role in different aspects of cancer progression, such as metastasis, stem cell traits, and chemoresistance. However, there are some disagreements and debate about these studies, which raise critical questions worthy of further investigation. Solving these questions will lead to a more complete understanding of cancer metastasis. Due to the close relationship of EMT to cancer metastasis and chemoresistance, targeting EMT or reversing EMT is likely to lead to novel therapeutic approaches for the treatment of human cancers.
Collapse
|
33
|
Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM. Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 2013; 8:e62334. [PMID: 23626803 PMCID: PMC3633860 DOI: 10.1371/journal.pone.0062334] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/20/2013] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The role of miRNAs in acquired endocrine-resistant breast cancer is not fully understood. One hallmark of tumor progression is epithelial-to-mesenchymal transition (EMT), characterized by a loss of cell adhesion resulting from reduced E-cadherin and increased cell mobility. miR-200 family members regulate EMT by suppressing expression of transcriptional repressors ZEB1/2. Previously we reported that the expression of miR-200a, miR-200b, and miR-200c was lower in LY2 endocrine-resistant, mesenchymal breast cancer cells compared to parental, endocrine sensitive, epithelial MCF-7 breast cancer cells. Here we investigated the regulation of miR-200 family members and their role in endocrine-sensitivity in breast cancer cells. RESULTS miR-200 family expression was progressively reduced in a breast cancer cell line model of advancing endocrine/tamoxifen (TAM) resistance. Concomitant with miR-200 decrease, there was an increase in ZEB1 mRNA expression. Overexpression of miR-200b or miR-200c in LY2 cells altered cell morphology to a more epithelial appearance and inhibited cell migration. Further, miR-200b and miR-200c overexpression sensitized LY2 cells to growth inhibition by estrogen receptor (ER) antagonists TAM and fulvestrant. Knockdown of ZEB1 in LY2 cells recapitulated the effect of miR-200b and miR-200c overexpression resulting in inhibition of LY2 cell proliferation by TAM and fulvestrant, but not the aromatase inhibitor exemestane. Demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) in combination with histone deacetylase inhibitor trichostatin A (TSA) increased miR-200b and miR-200c in LY2 cells. Concomitant with the increase in miR-200b and miR-200c, ZEB1 expression was decreased and cells appeared more epithelial in morphology and were sensitized to TAM and fulvestrant inhibition. Likewise, knockdown of ZEB1 increased antiestrogen sensitivity of LY2 cells resulting in inhibition of cell proliferation. CONCLUSIONS Our data indicate that reduced miRNA-200b and miR-200c expression contributes to endocrine resistance in breast cancer cells and that the reduced expression of these miR-200 family members in endocrine-resistant cells can be reversed by 5-aza-dC+TSA.
Collapse
Affiliation(s)
- Tissa T. Manavalan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Yun Teng
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Lacey M. Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Penn Muluhngwi
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Numan Al-Rayyan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
34
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
35
|
Li Z, Liu H, Jin X, Lo L, Liu J. Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics 2012; 13:731. [PMID: 23270386 PMCID: PMC3551688 DOI: 10.1186/1471-2164-13-731] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been implicated in the regulation of milk protein synthesis and development of the mammary gland (MG). However, the specific functions of miRNAs in these regulations are not clear. Therefore, the elucidation of miRNA expression profiles in the MG is an important step towards understanding the mechanisms of lactogenesis. Results Two miRNA libraries were constructed from MG tissues taken from a lactating and a non-lactating Holstein dairy cow, respectively, and the short RNA sequences (18–30 nt) in these libraries were sequenced by Solexa sequencing method. The libraries included 885 pre-miRNAs encoding for 921 miRNAs, of which 884 miRNAs were unique sequences and 544 (61.5%) were expressed in both periods. A custom-designed microarray assay was then performed to compare miRNA expression patterns in the MG of lactating and non-lactating dairy cows. A total of 56 miRNAs in the lactating MG showed significant differences in expression compared to non-lactating MG (P<0.05). Integrative miRNA target prediction and network analysis approaches were employed to construct an interaction network of lactation-related miRNAs and their putative targets. Using a cell-based model, six miRNAs (miR-125b, miR-141, miR-181a, miR-199b, miR-484 and miR-500) were studied to reveal their possible biological significance. Conclusion Our study provides a broad view of the bovine MG miRNA expression profile characteristics. Eight hundred and eighty-four miRNAs were identified in bovine MG. Differences in types and expression levels of miRNAs were observed between lactating and non-lactating bovine MG. Systematic predictions aided in the identification of lactation-related miRNAs, providing insight into the types of miRNAs and their possible mechanisms in regulating lactation.
Collapse
Affiliation(s)
- Zhen Li
- MOE Key Laboratory of Molecular Animal Nutrition, Hangzhou, 310058, PR China
| | | | | | | | | |
Collapse
|
36
|
Howe EN, Cochrane DR, Cittelly DM, Richer JK. miR-200c targets a NF-κB up-regulated TrkB/NTF3 autocrine signaling loop to enhance anoikis sensitivity in triple negative breast cancer. PLoS One 2012; 7:e49987. [PMID: 23185507 PMCID: PMC3503774 DOI: 10.1371/journal.pone.0049987] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022] Open
Abstract
Anoikis is apoptosis initiated upon cell detachment from the native extracellular matrix. Since survival upon detachment from basement membrane is required for metastasis, the ability to resist anoikis contributes to the metastatic potential of breast tumors. miR-200c, a potent repressor of epithelial to mesenchymal transition, is expressed in luminal breast cancers, but is lost in more aggressive basal-like, or triple negative breast cancers (TNBC). We previously demonstrated that miR-200c restores anoikis sensitivity to TNBC cells by directly targeting the neurotrophic receptor tyrosine kinase, TrkB. In this study, we identify a TrkB ligand, neurotrophin 3 (NTF3), as capable of activating TrkB to induce anoikis resistance, and show that NTF3 is also a direct target of miR-200c. We present the first evidence that anoikis resistant TNBC cells up-regulate both TrkB and NTF3 when suspended, and show that this up-regulation is necessary for survival in suspension. We further demonstrate that NF-κB activity increases 6 fold in suspended TNBC cells, and identify RelA and NF-κB1 as the transcription factors responsible for suspension-induced up-regulation of TrkB and NTF3. Consequently, inhibition of NF-κB activity represses anoikis resistance. Taken together, our findings define a critical mechanism for transcriptional and post-transcriptional control of suspension-induced up-regulation of TrkB and NTF3 in anoikis resistant breast cancer cells.
Collapse
Affiliation(s)
- Erin N. Howe
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Dawn R. Cochrane
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Diana M. Cittelly
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jennifer K. Richer
- Program in Cancer Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
37
|
Lambertini E, Lolli A, Vezzali F, Penolazzi L, Gambari R, Piva R. Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells. BMC Cancer 2012; 12:445. [PMID: 23031797 PMCID: PMC3534407 DOI: 10.1186/1471-2407-12-445] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/28/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast cancer and its metastatic progression is mainly directed by epithelial to mesenchymal transition (EMT), a phenomenon supported by specific transcription factors and miRNAs. METHODS In order to investigate a possible correlation between Slug transcription factor and miR-221, we performed Slug gene silencing in MDA-MB-231 breast cancer cells and evaluated the expression of genes involved in supporting the breast cancer phenotype, using qRT-PCR and Western blot analysis. Chromatin immunoprecipitation and wound healing assays were employed to determine a functional link between these two molecules. RESULTS We showed that Slug silencing significantly decreased the level of miR-221 and vimentin, reactivated Estrogen Receptor α and increased E-cadherin and TRPS1 expression. We demonstrated that miR-221 is a Slug target gene, and identified a specific region of miR-221 promoter that is transcriptionally active and binds the transcription factor Slug "in vivo". In addition, we showed that in Slug-silenced cells, wich retained residual miR-221 (about 38%), cell migration was strongly inhibited. Cell migration was inhibited, but to a less degree, following complete knockdown of miR-221 expression by transfection with antagomiR-221. CONCLUSIONS We report for the first time evidence of a correlation between Slug transcription factor and miR-221 in breast cancer cells. These studies suggest that miR-221 expression is, in part, dependent on Slug in breast cancer cells, and that Slug plays a more important role than miR-221 in cell migration and invasion.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
DNAJB6 is a constitutively expressed member of the HSP40 family. It has been described as a negative regulator of breast tumor progression and a regulator of epithelial phenotype. Expression of DNAJB6 is reported to be compromised with tumor progression. However, factors responsible for its downregulation are still undefined. We used a knowledge-based screen for identifying miRNAs capable of targeting DNAJB6. In this work, we present our findings that hsa-miR-632 (miR-632) targets the coding region of DNAJB6. Invasive and metastatic breast cancer cells express high levels of miR-632 compared with mammary epithelial cells. Analysis of RNA from breast tumor specimens reveals inverse expression patterns of DNAJB6 transcript and miR-632. In response to exogenous miR-632 expression, DNAJB6 protein levels are downregulated and the resultant cell population shows significantly increased invasive ability. Silencing endogenous miR-632 abrogates invasive ability of breast cancer cells and promotes epithelial like characteristics noted by E-cadherin expression with concomitant decrease in mesenchymal markers such as Zeb2 and Slug. Thus, miR-632 is a potentially important epigenetic regulator of DNAJB6, which contributes to the downregulation of DNAJB6 and plays a supportive role in malignant progression.
Collapse
|
39
|
Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012; 28:454-63. [PMID: 22717049 DOI: 10.1016/j.tig.2012.05.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a developmental process that is important for organ development, metastasis, cancer stemness, and organ fibrosis. The EMT process is regulated by different signaling pathways as well as by various epigenetic and post-transcriptional mechanisms. Here, we review recent progress describing the role of different chromatin modifiers in various signaling events leading to EMT, including hypoxia, transforming growth factor (TGF)-β, Notch, and Wnt. We also discuss post-transcriptional mechanisms, such as RNA alternative splicing and the effects of miRNAs in EMT regulation. Furthermore, we highlight on-going and future work aimed at a detailed understanding of the epigenetic and post-transcriptional mechanisms that regulate EMT. This work will shed new light on the cellular and tumorigenic processes affected by EMT misregulation.
Collapse
Affiliation(s)
- Chung-Yin Wu
- Department of Occupational Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Castañeda CA, Agullo-Ortuño MT, Fresno Vara JA, Cortes-Funes H, Gomez HL, Ciruelos E. Implication of miRNA in the diagnosis and treatment of breast cancer. Expert Rev Anticancer Ther 2012; 11:1265-75. [PMID: 21916580 DOI: 10.1586/era.11.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer (BC) comprises a group of different diseases characterized by changes in tissue structure and gene expression. Recent advances in molecular biology have shed new light on the participation of genes and their products in the biology of BC. MicroRNAs (miRNAs) are small noncoding endogenous RNA molecules that appear to modulate the expression of more than a third of human genes, and their implications in cancer have grasped the attention of the scientific community. Recently, several studies have described the association between miRNA expression profiles and pathological and clinical BC features. Moreover, these molecules represent a new type of molecular marker that can identify prognosis and guide the management of BC patients. With the increasing understanding of miRNA networks and their impact in the biology of BC, as well as the development of viable strategies to modulate specific miRNAs, we could improve the treatment of this disease.
Collapse
|
41
|
Foroni C, Broggini M, Generali D, Damia G. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 2011; 38:689-97. [PMID: 22118888 DOI: 10.1016/j.ctrv.2011.11.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/05/2011] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. In this process, cells acquire molecular alterations that facilitate dysfunctional cell-cell adhesive interactions and junctions. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Such transformation has implications in progression of breast carcinoma to metastasis, and increasing evidences support most tumors contain a subpopulation of cells with stem-like and mesenchymal features that is resistant to chemotherapy. This review focuses on the physiological and pathological role of EMT process, its molecular related network, its putative role in the metastatic process and its implications in response/resistance to the current and/or new approaching drugs in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Chiara Foroni
- U.O. Multidisciplinare di Patologia Mammaria, Laboratorio di Oncologia Molecolare Senologica, Istituti Ospitalieri di Cremona,Viale Concordia 1, 26100 Cremona, Italy
| | | | | | | |
Collapse
|
42
|
Shah MY, Calin GA. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med 2011; 3:56. [PMID: 21888691 PMCID: PMC3238182 DOI: 10.1186/gm272] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial in the initiation and progression of tumors. A recent study has reported that the miRNAs miR-221 and miR-222 are involved in the promotion of an aggressive basal-like phenotype in breast cancer, functioning downstream of the RAS pathway and triggering epithelial-to-mesenchymal transition. These new insights into the roles of miR-221/222 in breast cancer metastasis, drug resistance and RAS pathways could potentially have applications in medical practice.
Collapse
Affiliation(s)
- Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
43
|
Effects of SDF-1-CXCR4 signaling on microRNA expression and tumorigenesis in estrogen receptor-alpha (ER-α)-positive breast cancer cells. Exp Cell Res 2011; 317:2573-81. [PMID: 21906588 DOI: 10.1016/j.yexcr.2011.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 08/05/2011] [Accepted: 08/23/2011] [Indexed: 12/16/2022]
Abstract
The majority of breast cancer cases ultimately become unresponsive to endocrine therapies, and this progression of breast cancer from hormone-responsive to hormone-independent represents an area in need of further research. Additionally, hormone-independent carcinomas are characterized as being more aggressive and metastatic, key features of more advanced disease. Having previously shown the ability of the stromal-cell derived factor-1 (SDF-1)-CXCR4 signaling axis to promote primary tumorigenesis and hormone independence by overexpressing CXCR4 in MCF-7 cells, in this study we further examined the role of SDF-1/CXCR4 in the endogenously CXCR4-positive, estrogen receptor α (ER-α)-positive breast carcinoma cell line, MDA-MB-361. In addition to regulating estrogen-induced and hormone-independent tumor growth, CXCR4 signaling stimulated the epithelial-to-mesenchymal transition, evidenced by decreased CDH1 expression following SDF-1 treatment. Furthermore, inhibition of CXCR4 with the small molecule inhibitor AMD3100 induced CDH1 gene expression and inhibited CDH2 gene expression in MDA-MB-361 cells. Further, exogenous SDF-1 treatment induced ER-α-phosphorylation in both MDA-MB-361 and MCF-7-CXCR4 cells, demonstrating ligand-independent activation of ER-α through CXCR4 crosstalk. qPCR microRNA array analyses of the MDA-MB-361 and MCF-7-CXCR4 cell lines revealed changes in microRNA expression profiles induced by SDF-1, consistent with a more advanced disease phenotype and further supporting our hypothesis that the SDF-1/CXCR4 signaling axis drives ER-α-positive breast cancer cells to a hormone independent and more aggressive phenotype. In this first demonstration of SDF-1-CXCR4-induced microRNAs in breast cancer, we suggest that this signaling axis may promote tumorigenesis via microRNA regulation. These findings represent future potential therapeutic targets for the treatment of hormone-independent and endocrine-resistant breast cancer.
Collapse
|
44
|
Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D, Stephens RM, Green JE. Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol 2011; 12:R77. [PMID: 21846369 PMCID: PMC3245617 DOI: 10.1186/gb-2011-12-8-r77] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/29/2011] [Accepted: 08/16/2011] [Indexed: 02/01/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small, non-coding, endogenous RNAs involved in regulating gene expression and protein translation. miRNA expression profiling of human breast cancers has identified miRNAs related to the clinical diversity of the disease and potentially provides novel diagnostic and prognostic tools for breast cancer therapy. In order to further understand the associations between oncogenic drivers and miRNA expression in sub-types of breast cancer, we performed miRNA expression profiling on mammary tumors from eight well-characterized genetically engineered mouse (GEM) models of human breast cancer, including MMTV-H-Ras, -Her2/neu, -c-Myc, -PymT, -Wnt1 and C3(1)/SV40 T/t-antigen transgenic mice, BRCA1fl/fl;p53+/-;MMTV-cre knock-out mice and the p53fl/fl;MMTV-cre transplant model. Results miRNA expression patterns classified mouse mammary tumors according to luminal or basal tumor subtypes. Many miRNAs found in luminal tumors are expressed during normal mammary development. miR-135b, miR-505 and miR-155 are expressed in both basal human and mouse mammary tumors and many basal-associated miRNAs have not been previously characterized. miRNAs associated with the initiating oncogenic event driving tumorigenesis were also identified. miR-10b, -148a, -150, -199a and -486 were only expressed in normal mammary epithelium and not tumors, suggesting that they may have tumor suppressor activities. Integrated miRNA and mRNA gene expression analyses greatly improved the identification of miRNA targets from potential targets identified in silico. Conclusions This is the first large-scale miRNA gene expression study across a variety of relevant GEM models of human breast cancer demonstrating that miRNA expression is highly associated with mammary tumor lineage, differentiation and oncogenic pathways.
Collapse
Affiliation(s)
- Min Zhu
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cell Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Radisky DC. miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Res 2011; 13:110. [PMID: 21682933 PMCID: PMC3218941 DOI: 10.1186/bcr2885] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Decreased expression of miRNAs of the miR-200 family has been implicated in the growth and metastasis of breast cancer cells. Of this family, miR-200c has garnered particular attention as a consequence of its ability to target ZEB1 and ZEB2, mediators of epithelial- mesenchymal transition. An article in the previous issue of Breast Cancer Research identifies additional targets of miR-200c that link increased cancer cell invasiveness, resistance to apoptosis, and induction of breast cancer stem cell characteristics.
Collapse
|
46
|
Park JY, Helm J, Coppola D, Kim D, Malafa M, Kim SJ. MicroRNAs in pancreatic ductal adenocarcinoma. World J Gastroenterol 2011; 17:817-27. [PMID: 21412491 PMCID: PMC3051132 DOI: 10.3748/wjg.v17.i7.817] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Ductal adenocarcinoma of the pancreas is a lethal cancer for which the only chance of long-term survival belongs to the patient with localized disease in whom a potentially curative resection can be done. Therefore, biomarkers for early detection and new therapeutic strategies are urgently needed. miRNAs are a recently discovered class of small endogenous non-coding RNAs of about 22 nucleotides that have gained attention for their role in downregulation of mRNA expression at the post-transcriptional level. miRNAs regulate proteins involved in critical cellular processes such as differentiation, proliferation, and apoptosis. Evidence suggests that deregulated miRNA expression is involved in carcinogenesis at many sites, including the pancreas. Aberrant expression of miRNAs may upregulate the expression of oncogenes or downregulate the expression of tumor suppressor genes, as well as play a role in other mechanisms of carcinogenesis. The purpose of this review is to summarize our knowledge of deregulated miRNA expression in pancreatic cancer and discuss the implication for potential translation of this knowledge into clinical practice.
Collapse
|
47
|
Abstract
Intrinsic or acquired resistance to commonly used therapeutic agents is a major challenge in treating cancer patients. Decades of research have unraveled several unique and common mechanisms that could contribute to drug resistance in breast cancer. Recent studies unraveled the regulatory role of small noncoding RNA, designated as microRNA (miRNA), that were thought to be "junk" RNA in the past. Practically all aspects of cell physiology under normal and disease conditions were found to be regulated by miRNAs. In this review, we will discuss how miRNA profile is altered upon resistance development and the critical regulatory role miRNAs play in conferring resistance to commonly used therapeutic agents. It is hoped that further studies will lead to use of these differentially expressed miRNAs as prognostic and predictive markers, as well as novel therapeutic targets to overcome resistance.
Collapse
Affiliation(s)
- Sarmila Majumder
- Department of Molecular and Cellular Biochemistry, College of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|