1
|
Ma L, Mao JH, Barcellos-Hoff MH. Systemic inflammation in response to radiation drives the genesis of an immunosuppressed tumor microenvironment. Neoplasia 2025; 64:101164. [PMID: 40184664 PMCID: PMC11999686 DOI: 10.1016/j.neo.2025.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The composition of the tumor immune microenvironment has become a major determinant of response to therapy, particularly immunotherapy. Clinically, a tumor microenvironment lacking lymphocytes, so-called "cold" tumors, are considered poor candidates for immune checkpoint inhibition. In this review, we describe the diversity of the tumor immune microenvironment in breast cancer and how radiation exposure alters carcinogenesis. We review the development and use of a radiation-genetic mammary chimera model to clarify the mechanism by which radiation acts. Using the chimera model, we demonstrate that systemic inflammation elicited by a low dose of radiation is key to the construction of an immunosuppressive tumor microenvironment, resulting in aggressive, rapidly growing tumors lacking lymphocytes. Our experimental studies inform the non-mutagenic mechanisms by which radiation affects cancer and provide insight into the genesis of cold tumors.
Collapse
Affiliation(s)
- Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143 USA.
| |
Collapse
|
2
|
Papadopoulou A, Kalodimou VE, Mavrogonatou E, Karamanou K, Yiacoumettis AM, Panagiotou PN, Pratsinis H, Kletsas D. Decreased differentiation capacity and altered expression of extracellular matrix components in irradiation-mediated senescent human breast adipose-derived stem cells. IUBMB Life 2022; 74:969-981. [PMID: 35833571 DOI: 10.1002/iub.2659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Radiotherapy is widely used for the treatment of breast cancer. However, we have shown that ionizing radiation can provoke premature senescence in breast stromal cells. In particular, breast stromal fibroblasts can become senescent after irradiation both in vitro and in vivo and they express an inflammatory phenotype and an altered profile of extracellular matrix components, thus facilitating tumor progression. Adipose-derived stem cells (ASCs) represent another major component of the breast tissue stroma. They are multipotent cells and due to their ability to differentiate in multiple cell lineages they play an important role in tissue maintenance and repair in normal and pathologic conditions. Here, we investigated the characteristics of human breast ASCs that became senescent prematurely after their exposure to ionizing radiation. We found decreased expression levels of the specific mesenchymal cell surface markers CD105, CD73, CD44, and CD90. In parallel, we demonstrated a significantly reduced expression of transcription factors regulating osteogenic (i.e., RUNX2), adipogenic (i.e., PPARγ), and chondrogenic (i.e., SOX9) differentiation; this was followed by an analogous reduction in their differentiation capacity. Furthermore, they overexpress inflammatory markers, that is, IL-6, IL-8, and ICAM-1, and a catabolic phenotype, marked by the reduction of collagen type I and the increase of MMP-1 and MMP-13 expression. Finally, we detected changes in proteoglycan expression, for example, the upregulation of syndecan 1 and syndecan 4 and the downregulation of decorin. Notably, all these alterations, when observed in the breast stroma, represent poor prognostic factors for tumor development. In conclusion, we showed that ionizing radiation-mediated prematurely senescent human breast ASCs have a decreased differentiation potential and express specific changes adding to the formation of a permissive environment for tumor growth.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki E Kalodimou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantina Karamanou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Andreas M Yiacoumettis
- Plastic and Reconstructive Surgery Department, Metropolitan General Hospital, Athens, Greece
| | - Petros N Panagiotou
- Department of Plastic Surgery and Burns Unit, KAT General Hospital of Athens, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
3
|
Oweida AJ, Mueller AC, Piper M, Milner D, Van Court B, Bhatia S, Phan A, Bickett T, Jordan K, Proia T, Schulick R, Messersmith WA, Del Chiaro M, Clambey E, Gough MJ, Williams J, Hansen K, Goodman K, Karam SD. Response to radiotherapy in pancreatic ductal adenocarcinoma is enhanced by inhibition of myeloid-derived suppressor cells using STAT3 anti-sense oligonucleotide. Cancer Immunol Immunother 2021; 70:989-1000. [PMID: 33097963 PMCID: PMC10991244 DOI: 10.1007/s00262-020-02701-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous tumor microenvironment (TME) comprised of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, neutrophils, regulatory T cells, and myofibroblasts. The precise mechanisms that regulate the composition of the TME and how they contribute to radiotherapy (RT) response remain poorly understood. In this study, we analyze changes in immune cell populations and circulating chemokines in patient samples and animal models of pancreatic cancer to characterize the immune response to radiotherapy. Further, we identify STAT3 as a key mediator of immunosuppression post-RT. We found granulocytic MDSCs (G-MDSCs) and neutrophils to be increased in response to RT in murine and human PDAC samples. We also found that RT-induced STAT3 phosphorylation correlated with increased MDSC infiltration and proliferation. Targeting STAT3 using an anti-sense oligonucleotide in combination with RT circumvented RT-induced MDSC infiltration, enhanced the proportion of effector T cells, and improved response to RT. In addition, STAT3 inhibition contributed to the remodeling of the PDAC extracellular matrix when combined with RT, resulting in decreased collagen deposition and fibrotic tissue formation. Collectively, our data provide evidence that targeting STAT3 in combination with RT can mitigate the pro-tumorigenic effects of RT and improve tumor response.
Collapse
Affiliation(s)
- Ayman J Oweida
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Canada
| | - Adam C Mueller
- Thomas Jefferson University, Bodine Center for Cancer Treatment, 1665 Aurora Court Suite 1032, Philadelphia, PA, USA
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Andy Phan
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Thomas Bickett
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa Proia
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Richard Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marco Del Chiaro
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Medical Center, Portland, OR, USA
| | - Jason Williams
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk Hansen
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karyn Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sana D Karam
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Canada.
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, 1665 Aurora Court Suite 1032, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
5
|
Presence of Stromal Cells Enhances Epithelial-to-Mesenchymal Transition (EMT) Induction in Lung Bronchial Epithelium after Protracted Exposure to Oxidative Stress of Gamma Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4120379. [PMID: 31583039 PMCID: PMC6754954 DOI: 10.1155/2019/4120379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 02/03/2023]
Abstract
The aim of the study was to investigate the role of a microenvironment in the induction of epithelial-to-mesenchymal transition (EMT) as a sign of early stages of carcinogenesis in human lung epithelial cell lines after protracted low-dose rate γ-radiation exposures. BEAS-2B and HBEC-3KT lung cell lines were irradiated with low-dose rate γ-rays (137Cs, 1.4 or 14 mGy/h) to 0.1 or 1 Gy with or without adding TGF-β. TGF-β-treated samples were applied as positive EMT controls and tested in parallel to find out if the radiation has a potentiating effect on the EMT induction. To evaluate the effect of the stromal component, the epithelial cells were irradiated in cocultures with stromal MRC-9 lung fibroblasts. On day 3 post treatment, the EMT markers: α-SMA, vimentin, fibronectin, and E-cadherin, were analyzed. The oxidative stress levels were evaluated by 8-oxo-dG analysis in both epithelial and fibroblast cells. The protracted exposure to low Linear Energy Transfer (LET) radiation at the total absorbed dose of 1 Gy was able to induce changes suggestive of EMT. The results show that the presence of the stromal component and its signaling (TGF-β) in the cocultures enhances the EMT. Radiation had a minor cumulative effect on the TGF-β-induced EMT with both doses. The oxidative stress levels were higher than the background in both epithelial and stromal cells post chronic irradiation (0.1 and 1 Gy); as for the BEAS-2B cell line, the increase was statistically significant. We suggest that the induction of EMT in bronchial epithelial cells by radiation requires more than single acute exposure and the presence of stromal component might enhance the effect through free radical production and accumulation.
Collapse
|
6
|
Lennon S, Oweida A, Milner D, Phan AV, Bhatia S, Van Court B, Darragh L, Mueller AC, Raben D, Martínez-Torrecuadrada JL, Pitts TM, Somerset H, Jordan KR, Hansen KC, Williams J, Messersmith WA, Schulick RD, Owens P, Goodman KA, Karam SD. Pancreatic Tumor Microenvironment Modulation by EphB4-ephrinB2 Inhibition and Radiation Combination. Clin Cancer Res 2019; 25:3352-3365. [PMID: 30944125 DOI: 10.1158/1078-0432.ccr-18-2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE A driving factor in pancreatic ductal adenocarcinoma (PDAC) treatment resistance is the tumor microenvironment, which is highly immunosuppressive. One potent immunologic adjuvant is radiotherapy. Radiation, however, has also been shown to induce immunosuppressive factors, which can contribute to tumor progression and formation of fibrotic tumor stroma. To capitalize on the immunogenic effects of radiation and obtain a durable tumor response, radiation must be rationally combined with targeted therapies to mitigate the influx of immunosuppressive cells and fibrosis. One such target is ephrinB2, which is overexpressed in PDAC and correlates negatively with prognosis.Experimental Design: On the basis of previous studies of ephrinB2 ligand-EphB4 receptor signaling, we hypothesized that inhibition of ephrinB2-EphB4 combined with radiation can regulate the microenvironment response postradiation, leading to increased tumor control in PDAC. This hypothesis was explored using both cell lines and in vivo human and mouse tumor models. RESULTS Our data show this treatment regimen significantly reduces regulatory T-cell, macrophage, and neutrophil infiltration and stromal fibrosis, enhances effector T-cell activation, and decreases tumor growth. Furthermore, our data show that depletion of regulatory T cells in combination with radiation reduces tumor growth and fibrosis. CONCLUSIONS These are the first findings to suggest that in PDAC, ephrinB2-EphB4 interaction has a profibrotic, protumorigenic role, presenting a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Shelby Lennon
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andy V Phan
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jorge L Martínez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Williams
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Department of Veterans Affairs, Denver, Colorado
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
7
|
Darragh LB, Oweida AJ, Karam SD. Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment. Front Immunol 2019; 9:3154. [PMID: 30766539 PMCID: PMC6366147 DOI: 10.3389/fimmu.2018.03154] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy has been used for many years to treat tumors based on its DNA-damage-mediated ability to kill cells. More recently, RT has been shown to exert beneficial modulatory effects on immune responses, such as triggering immunogenic cell death, enhancing antigen presentation, and activating cytotoxic T cells. Consequently, combining radiation therapy with immunotherapy represents an important area of research. Thus far, immune-checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been the focus of many research studies and clinical trials. The available data suggest that such immunotherapies are enhanced when combined with radiation therapy. However, treatment resistance, intrinsic or acquired, is still prevalent. Various theories as to how to enhance these combination therapies to overcome treatment resistance have been proposed. In this review, we focus on the principles surrounding radiation therapy's positive and negative effects on the tumor microenvironment. We explore mechanisms underlying radiation therapy's synergistic and antagonistic effects on immune responses and provide a base of knowledge for radio-immunology combination therapies to overcome treatment resistance. We provide evidence for targeting regulatory T cells, tumor-associated macrophages, and cancer-associated fibroblasts in combination radio-immunotherapies to improve cancer treatment.
Collapse
Affiliation(s)
| | | | - Sana D. Karam
- Department of Radiation Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
8
|
Arnold KM, Flynn NJ, Raben A, Romak L, Yu Y, Dicker AP, Mourtada F, Sims-Mourtada J. The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. CANCER GROWTH AND METASTASIS 2018; 11:1179064418761639. [PMID: 29551910 PMCID: PMC5846913 DOI: 10.1177/1179064418761639] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
In addition to inducing lethal DNA damage in tumor and stromal cells, radiation can alter the interactions of tumor cells with their microenvironment. Recent technological advances in planning and delivery of external beam radiotherapy have allowed delivery of larger doses per fraction (hypofractionation) while minimizing dose to normal tissues with higher precision. The effects of radiation on the tumor microenvironment vary with dose and fractionation schedule. In this review, we summarize the effects of conventional and hypofractionated radiation regimens on the immune system and tumor stroma. We discuss how these interactions may provide therapeutic benefit in combination with targeted therapies. Understanding the differential effects of radiation dose and fractionation can have implications for choice of combination therapies.
Collapse
Affiliation(s)
- Kimberly M Arnold
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Nicole J Flynn
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Adam Raben
- Department of Radiation Oncology, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Lindsay Romak
- Department of Radiation Oncology, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Yan Yu
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Firas Mourtada
- Department of Radiation Oncology, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA.,Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
9
|
Russell NS, Krul IM, van Eggermond AM, Aleman BM, Cooke R, Kuiper S, Allen SD, Wallis MG, Llanas D, Diallo I, de Vathaire F, Smith SA, Hauptmann M, Broeks A, Swerdlow AJ, Van Leeuwen FE. Retrospective methods to estimate radiation dose at the site of breast cancer development after Hodgkin lymphoma radiotherapy. Clin Transl Radiat Oncol 2017; 7:20-27. [PMID: 29594225 PMCID: PMC5862668 DOI: 10.1016/j.ctro.2017.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/16/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND An increased risk of breast cancer following radiotherapy for Hodgkin lymphoma (HL) has now been robustly established. In order to estimate the dose-response relationship more accurately, and to aid clinical decision making, a retrospective estimation of the radiation dose delivered to the site of the subsequent breast cancer is required. METHODS For 174 Dutch and 170 UK female patients with breast cancer following HL treatment, the 3-dimensional position of the breast cancer in the affected breast was determined and transferred onto a CT-based anthropomorphic phantom. Using a radiotherapy treatment planning system the dose distribution on the CT-based phantom was calculated for the 46 different radiation treatment field set-ups used in the study population. The estimated dose at the centre of the breast cancer, and a margin to reflect dose uncertainty were determined on the basis of the location of the tumour and the isodose lines from the treatment planning. We assessed inter-observer variation and for 47 patients we compared the results with a previously applied dosimetry method. RESULTS The estimated median point dose at the centre of the breast cancer location was 29.75 Gy (IQR 5.8-37.2), or about 75% of the prescribed radiotherapy dose. The median dose uncertainty range was 5.97 Gy. We observed an excellent inter-observer variation (ICC 0.89 (95% CI: 0.74-0.95)). The absolute agreement intra-class correlation coefficient (ICC) for inter-method variation was 0.59 (95% CI: 0.37-0.75), indicating (nearly) good agreement. There were no systematic differences in the dose estimates between observers or methods. CONCLUSION Estimates of the dose at the point of a subsequent breast cancer show good correlation between methods, but the retrospective nature of the estimates means that there is always some uncertainty to be accounted for.
Collapse
Affiliation(s)
- Nicola S. Russell
- Department of Radiation Oncology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Inge M. Krul
- Divison of Psychosocial Research, Epidemiology and Biostatistics, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Anna M. van Eggermond
- Divison of Psychosocial Research, Epidemiology and Biostatistics, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Berthe M.P. Aleman
- Department of Radiation Oncology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Rosie Cooke
- Division of Genetics and Epidemiology (R.C., A.J.S.), Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Susanne Kuiper
- Department of Radiation Oncology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Steven D. Allen
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Rd, Sutton, Surrey SM2 5PT, UK
| | - Matthew G. Wallis
- Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, England, UK
| | - Damien Llanas
- Cancer and Radiation Team, Centre for Research in Epidemiology and Population Health, Institut National de la Santé et de la Recherche Médicale Unit 1018, Villejuif, France
| | - Ibrahima Diallo
- Cancer and Radiation Team, Centre for Research in Epidemiology and Population Health, Institut National de la Santé et de la Recherche Médicale Unit 1018, Villejuif, France
| | - Florent de Vathaire
- Cancer and Radiation Team, Centre for Research in Epidemiology and Population Health, Institut National de la Santé et de la Recherche Médicale Unit 1018, Villejuif, France
| | - Susan A. Smith
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - Michael Hauptmann
- Divison of Psychosocial Research, Epidemiology and Biostatistics, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Annegien Broeks
- Division of Molecular Pathology, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Anthony J. Swerdlow
- Division of Genetics and Epidemiology (R.C., A.J.S.), Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
- Division of Breast Cancer Research (A.J.S.), Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Flora E. Van Leeuwen
- Divison of Psychosocial Research, Epidemiology and Biostatistics, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
10
|
Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: the role of TGF-β. Aging (Albany NY) 2017; 8:1650-69. [PMID: 27434331 PMCID: PMC5032688 DOI: 10.18632/aging.100989] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
The cell surface proteoglycan syndecan 1 (SDC1) is overexpressed in the malignant breast stromal fibroblasts, creating a favorable milieu for tumor cell growth. In the present study, we found that ionizing radiation, a well-established treatment in human breast cancer, provokes premature senescence of human breast stromal fibroblasts in vitro, as well as in the breast tissue in vivo. These senescent cells were found to overexpress SDC1 both in vitro and in vivo. By using a series of specific inhibitors and siRNA approaches, we showed that this SDC1 overexpression in senescent cells is the result of an autocrine action of Transforming Growth Factor-β (TGF-β) through the Smad pathway and the transcription factor Sp1, while the classical senescence pathways of p53 or p38 MAPK - NF-kB are not involved. In addition, the highly invasive human breast cancer cells MDA-MB-231 (in contrast to the low-invasive MCF-7) can also enhance SDC1 expression, both in early-passage and senescent fibroblasts via a paracrine action of TGF-β. The above suggest that radiation-mediated premature senescence and invasive tumor cells, alone or in combination, enhance SDC1 expression in breast stromal fibroblasts, a poor prognostic factor for cancer growth, and that TGF-β plays a crucial role in this process.
Collapse
|
11
|
Luo H, Liu M, Luo S, Yu T, Wu C, Yang G, Tu G. Dynamic monitoring of GPER-mediated estrogenic effects in breast cancer associated fibroblasts: An alternative role of estrogen in mammary carcinoma development. Steroids 2016; 112:1-11. [PMID: 27016131 DOI: 10.1016/j.steroids.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
Abstract
Cancer associated fibroblasts (CAFs) are crucial contributors to breast cancer development. Estrogen affects mammary stroma in both physiological and pathophysiological conditions. We show here that estrogen (G-protein coupled) receptor (GPER) could be detected by immunohistochemistry in stromal fibroblasts of primary breast cancers. The presence of GPER expression was further confirmed by immunofluorescence and quantitative PCR in CAFs isolated from primary breast cancers. Based on dynamic monitoring by real time cell analyzer (RTCA) system, 17-β-estradiol (E2) as well as GPER specific agonist G1 were observed to trigger transient cell index increasing within an hour in a dosage-dependent manner in breast CAFs. In addition, E2 and G1 stimulated intracellular calcium modulation and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 within seconds and minutes in CAFs, respectively. Moreover, E2 and G1 promoted cell proliferation of breast CAFs measured by RTCA monitoring, cell viability assay and cell cycle analysis, and this promotion could be blocked by a GPER-selective antagonist G15. Interestingly, dynamic RTCA monitoring indicated that E2 increased adhesion of resuspended cells, and microscopy confirmed that E2 stimulated cell spreading. Both the adhesion and spreading were proposed to be mediated by GPER, since G1 also stimulated these effects similar to E2, and G15 reduced them. Moreover, GPER was found to mediate migration that was increased by E2 and G1 but reduced by G15 in RTCA cell migration assay and transwell assay. Accordingly, GPER mediates not only rapid actions but also slow effects including adhesion/spreading, proliferation and migration in breast CAFs. Estrogen is likely to affect tumor associated stroma and contributes to mammary carcinoma development through CAFs.
Collapse
Affiliation(s)
- Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shujuan Luo
- Department of Gynecology and Obstetrics, Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Tenghua Yu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Chengyi Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guanglun Yang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Asparuhova MB, Secondini C, Rüegg C, Chiquet-Ehrismann R. Mechanism of irradiation-induced mammary cancer metastasis: A role for SAP-dependent Mkl1 signaling. Mol Oncol 2015; 9:1510-27. [PMID: 25999144 PMCID: PMC5528797 DOI: 10.1016/j.molonc.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/19/2015] [Accepted: 04/11/2015] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is a standard treatment after conservative breast cancer surgery. However, cancers relapsing within a previously irradiated area have an increased probability to metastasize. The mechanisms responsible for this aggressiveness remain unclear. Here, we used the clinically relevant 4T1 breast cancer model mimicking aggressive local relapse after radiotherapy to identify differences between tumors grown in untreated versus preirradiated mammary glands. Tumors grown within preirradiated beds were highly enriched in transcripts encoding collagens and other proteins building or modifying the extracellular matrix, such as laminin‐332, tenascins, lysyl oxidases and matrix metalloproteinases. Type I collagen, known to directly contribute to tissue stiffening, and the pro‐metastatic megakaryoblastic leukemia‐1 (Mkl1) target gene tenascin‐C were further investigated. Mammary tissue preirradiation induced Mkl1 nuclear translocation in the tumor cells in vivo, indicating activation of Mkl1 signaling. Transcript profiling of cultured 4T1 cells revealed that the majority of the Mkl1 target genes, including tenascin‐C, required serum response factor (SRF) for their expression. However, application of dynamic strain or matrix stiffness to 4T1 cells converted the predominant SRF/Mkl1 action into SAP domain‐dependent Mkl1 signaling independent of SRF, accompanied by a switch to SAP‐dependent tumor cell migration. 4T1 tumors overexpressing intact Mkl1 became more metastatic within preirradiated beds, while tumors expressing Mkl1 lacking the SAP domain exhibited impaired growth and metastatic spread, and decreased Mkl1 target gene expression. Thus, we identified SAP‐dependent Mkl1 signaling as a previously unrecognized mediator of aggressive progression of mammary tumors locally relapsing after radiotherapy, and provide a novel signaling pathway for therapeutic intervention. Stroma irradiation results in tumors with increased extracellular matrix deposition. Irradiation induces Mkl1 nuclear translocation, tumor growth and lung metastases. Matrix stiffness and cyclic mechanical strain trigger SAP‐dependent Mkl1 signaling. Strain and irradiation induce SAP‐dependent cell migration and tumor progression. Radiation‐induced SAP‐dependent Mkl1 action: a new target for breast cancer therapy.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Friedrich Miescher Institute for Biomedical Research, Affiliated with the Novartis Institutes for Biomedical Research and the University of Basel, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Chiara Secondini
- Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 1, 1700 Fribourg, Switzerland.
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, Rue Albert Gockel 1, 1700 Fribourg, Switzerland.
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Affiliated with the Novartis Institutes for Biomedical Research and the University of Basel, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland.
| |
Collapse
|
13
|
Kreuzer M, Auvinen A, Cardis E, Hall J, Jourdain JR, Laurier D, Little MP, Peters A, Raj K, Russell NS, Tapio S, Zhang W, Gomolka M. Low-dose ionising radiation and cardiovascular diseases – Strategies for molecular epidemiological studies in Europe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:90-100. [DOI: 10.1016/j.mrrev.2015.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/31/2022]
|
14
|
Sun X, Sandhu R, Figueroa JD, Gierach GL, Sherman ME, Troester MA. Benign breast tissue composition in breast cancer patients: association with risk factors, clinical variables, and gene expression. Cancer Epidemiol Biomarkers Prev 2014; 23:2810-8. [PMID: 25249325 DOI: 10.1158/1055-9965.epi-14-0507] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Breast tissue composition (epithelium, non-fatty stroma, and adipose) changes qualitatively and quantitatively throughout the lifespan, and may mediate relationships between risk factors and breast cancer initiation. We sought to identify relationships between tissue composition, risk factors, tumor characteristics, and gene expression. METHODS Participants were 146 patients from the Polish Breast Cancer Study, with data on risk factor and clinicopathological characteristics. Benign breast tissue composition was evaluated using digital image analysis of histologic sections. Whole-genome microarrays were performed on the same tissue blocks. RESULTS Mean epithelial, non-fatty stromal, and adipose proportions were 8.4% (SD = 4.9%), 27.7% (SD = 24.0%), and 64.0% (SD = 24.0%), respectively. Among women <50 years old, stroma proportion decreased and adipose proportion increased with age, with approximately 2% difference per year (P < 0.01). The variation in epithelial proportion with age was modest (0.1% per year). Higher epithelial proportion was associated with obesity (7.6% in nonobese vs. 10.1% in obese; P = 0.02) and with poorly differentiated tumors (7.8% in well/moderate vs. 9.9% in poor; P = 0.05). Gene expression signatures associated with epithelial and stromal proportion were identified and validated. Stroma-associated genes were in metabolism and stem cell maintenance pathways, whereas epithelial genes were enriched for cytokine and immune response pathways. CONCLUSIONS Breast tissue composition was associated with age, body mass index, and tumor grade, with consequences for breast gene expression. IMPACT Breast tissue morphologic factors may influence breast cancer etiology. Composition and gene expression may act as biomarkers of breast cancer risk and progression.
Collapse
Affiliation(s)
| | - Rupninder Sandhu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonine D Figueroa
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, and
| | - Gretchen L Gierach
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, and
| | - Mark E Sherman
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, and Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Melissa A Troester
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
15
|
Tumor and the microenvironment: a chance to reframe the paradigm of carcinogenesis? BIOMED RESEARCH INTERNATIONAL 2014; 2014:934038. [PMID: 25013812 PMCID: PMC4075186 DOI: 10.1155/2014/934038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
The somatic mutation theory of carcinogenesis has eventually accumulated an impressive body of shortfalls and paradoxes, as admittedly claimed by its own supporters given that the cell-based approach can hardly explain the emergence of tissue-based processes, like cancer. However, experimental data and alternatives theories developed during the last decades may actually provide a new framework on which cancer research should be reframed. Such issue may be fulfilled embracing new theoretical perspectives, taking the cells-microenvironment interplay as the privileged level of observation and assuming radically different premises as well as new methodological frameworks. Within that perspective, the tumor microenvironment cannot be merely considered akin to new “factor” to be added to an already long list of “signaling factors”; microenvironment represents the physical-biochemical support of the morphogenetic field which drives epithelial cells towards differentiation and phenotype transformation, according to rules understandable only by means of a systems biology approach. That endeavour entails three fundamental aspects: general biological premises, the level of observation (i.e., the systems to which we are looking for), and the principles of biological organization that would help in integrating and understanding experimental data.
Collapse
|
16
|
Bouchard G, Bouvette G, Therriault H, Bujold R, Saucier C, Paquette B. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer 2013; 109:1829-38. [PMID: 24002607 PMCID: PMC3790160 DOI: 10.1038/bjc.2013.502] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023] Open
Abstract
Background: In most patients with breast cancer, radiotherapy induces inflammation that is characterised by an increase of promigratory factors in healthy tissues surrounding the tumour. However, their role in the emergence of the migration phenotype and formation of metastases is still unclear. Methods: A single mammary gland of BALB/c mice was irradiated with four doses of 6 Gy given at a 24-h interval. After the last session of irradiation, treated and control mammary glands were either collected for quantification of promigratory and proinflammatory factors or were implanted with fluorescent ubiquitination-based cell cycle indicator (FUCCI)-expressing mouse mammary cancer D2A1 cells. The migration of cancer cells in the mammary glands was monitored by optical imaging. On day 21, mammary tumours and lungs were collected for histology analyses and the quantification of metastases. Results: Pre-irradiation of the mammary gland increased by 1.8-fold the migration of cancer cells, by 2-fold the quantity of circulating cancer cells and by 2.4-fold the number of lung metastases. These adverse effects were associated with the induction of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). Conclusion: The emergence of the metastasis phenotype is believed to be associated with the accumulation of mutations in cancer cells. Our results suggest an alternative mechanism based on promigratory factors from irradiated mammary glands. In clinic, the efficiency of radiotherapy could be improved by anti-inflammatory agents that would prevent the stimulation of cancer cell migration induced by radiation.
Collapse
Affiliation(s)
- G Bouchard
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE Recently, several landmark randomized trials were published that justify the use of alternative fractionation schemes, e.g., hypofractionation, in adjuvant applications of whole-breast radiotherapy following breast-conserving surgery. We are studying effects of fractionated photon radiotherapy on stromal cell biology to understand how fractionation parameters influence the cellular microenvironment. METHODS AND MATERIALS Three-dimensional (3-D) collagen matrices, fibroblasts, and transforming growth factor beta 1 (TGF-β1) were combined to model microenvironmental components of mammary stroma. We explored the effects of fractionation schemes on collagen matrix stiffness and fibroblast activation using this culture model. Samples were exposed to 6 MV X-rays from a linear accelerator in daily fraction sizes of 90, 180 and 360 cGy over three days in a manner consistent with irradiation exposure during radiotherapy. RESULTS Fibroblast-cell activation and collagen sample stiffness both increased over time for all samples, but marked changes were noted when samples were irradiated and/or stimulated with growth factors in relation to the magnitude of the stimulus. We found a significant reduction in fibroblast proliferation and activation with fraction size but a modest and irreversible increase in matrix stiffness as the dose increased. Overall, larger fraction sizes reduced conditions leading to the formation of a reactive stroma. CONCLUSION There is a significant reduction in fibroblast activation and a modest increase in matrix stiffness with increasing fraction size over a 72-hour observation time in 3-D cultures modeling mammary stroma. However, expanded in vitro studies with more mammary components are needed to evaluate the net effects of stromal reactivity to radiotherapy. Our results suggest that the stromal cell microenvironment is an important consideration when optimizing fractionation schedules.
Collapse
Affiliation(s)
- Muqeem A Qayyum
- Department of Bioengineering, University of Illinois at Urbana-Champaign, IL 61801, USA.
| | | |
Collapse
|
18
|
Cichon MA, Radisky ES, Radisky DC. Identifying the stroma as a critical player in radiation-induced mammary tumor development. Cancer Cell 2011; 19:571-2. [PMID: 21575857 DOI: 10.1016/j.ccr.2011.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Magdalena A Cichon
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL 32225, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- Charlotte Kuperwasser
- Sackler School Tufts University School of Medicine, Department of Anatomy & Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|