1
|
Young MW, Dickinson E, Gustafson JA, Granatosky MC. Center of mass position does not drive energetic costs during climbing. J Exp Biol 2024; 227:jeb246943. [PMID: 38511508 DOI: 10.1242/jeb.246943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Climbing animals theoretically should optimize the energetic costs of vertical climbing while also maintaining stability. Many modifications to climbing behaviors have been proposed as methods of satisfying these criteria, focusing on controlling the center of mass (COM) during ascent. However, the link between COM movements and metabolic energy costs has yet to be evaluated empirically. In this study, we manipulated climbing conditions across three experimental setups to elicit changes in COM position, and measured the impact of these changes upon metabolic costs across a sample of 14 humans. Metabolic energy was assessed via open flow respirometry, while COM movements were tracked both automatically and manually. Our findings demonstrate that, despite inducing variation in COM position, the energetic costs of climbing remained consistent across all three setups. Differences in energetic costs were similarly not affected by body mass; however, velocity had a significant impact upon both cost of transport and cost of locomotion, but such a relationship disappeared when accounting for metabolic costs per stride. These findings suggest that climbing has inescapable metabolic demands driven by gaining height, and that attempts to mitigate such a cost, with perhaps the exception of increasing speed, have only minimal impacts. We also demonstrate that metabolic and mechanical energy costs are largely uncorrelated. Collectively, we argue that these data refute the idea that efficient locomotion is the primary aim during climbing. Instead, adaptations towards effective climbing should focus on stability and reducing the risk of falling, as opposed to enhancing the metabolic efficiency of locomotion.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jon A Gustafson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
2
|
Young MW, Webster C, Tanis D, Schurr AF, Hanna CS, Lynch SK, Ratkiewicz AS, Dickinson E, Kong FH, Granatosky MC. What does climbing mean exactly? Assessing spatiotemporal gait characteristics of inclined locomotion in parrots. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:19-33. [PMID: 37140643 DOI: 10.1007/s00359-023-01630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly "climbing" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Clyde Webster
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Daniel Tanis
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alissa F Schurr
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Christopher S Hanna
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Samantha K Lynch
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aleksandra S Ratkiewicz
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Felix H Kong
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
3
|
Dickinson E, Hanna CS, Fischer HM, Davoli EC, Currier AA, Granatosky MC. Locomotor energetics in the Indonesian blue-tongued skink (Tiliqua gigas) with implications for the cost of belly-dragging in early tetrapods. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:329-336. [PMID: 34914867 DOI: 10.1002/jez.2569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
During the last decade, biomechanical and kinematic studies have suggested that a belly-dragging gait may have represented a critical locomotor stage during tetrapod evolution. This form of locomotion is hypothesized to facilitate animals to move on land with relatively weaker pectoral muscles. The Indonesian blue-tongued skink (Tiliqua gigas) is known for its belly-dragging locomotion and is thought to employ many of the same spatiotemporal gait characteristics of stem tetrapods. Conversely, the savannah monitor (Varanus exanthematicus) employs a raised quadrupedal gait. Thus, differences in the energetic efficiency of locomotion between these taxa may elucidate the role of energetic optimization in driving gait shifts in early tetrapods. Five Tiliqua and four Varanus were custom-fitted for 3D printed helmets that, combined with a Field Metabolic System, were used to collect open-flow respirometry data including O2 consumption, CO2 production, water vapor pressure, barometric pressure, room temperature, and airflow rates. Energetic data were collected for each species at rest, and when walking at three different speeds. Energetic consumption in each taxon increased at greater speeds. On a per-stride basis, energetic costs appear similar between taxa. However, significant differences were observed interspecifically in terms of net cost of transport. Overall, energy expenditure was ~20% higher in Tiliqua at equivalent speeds, suggesting that belly-dragging does impart a tangible energetic cost during quadrupedal locomotion. This cost, coupled with the other practical constraints of belly-dragging (e.g., restricting top-end speed and reducing maneuverability in complex terrains) may have contributed to the adoption of upright quadrupedal walking throughout tetrapod locomotor evolution.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Christopher S Hanna
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Hannah M Fischer
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Elizabeth C Davoli
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Allen A Currier
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
4
|
Granatosky MC, Amanat S, Panyutina AA, Youlatos D. Gait mechanics of a blind echolocating rodent: Implications for the locomotion of small arboreal mammals and proto-bats. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:436-453. [PMID: 33830677 DOI: 10.1002/jez.2462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 01/25/2023]
Abstract
Arboreal mammals have evolved a range of biomechanical adaptations that allow them to navigate trees effectively. One such feature that has received considerable attention is the importance of vision that helps arboreal animals assess gap distances, assure proper foot placement, and inspect potential risks. While there is considerable debate about the relative importance of the visual system specifics, there is little doubt that the ability to at least see the environment must confer some level of safety when navigating arboreal substrates. In this study, we explore spatiotemporal and kinematic patterns of arboreal locomotion in the Vietnamese pygmy dormouse (Typhlomys chapensis), a blind rodent that uses ultrasonic echolocation to navigate in tree canopies. We compare these data with five other species of arboreal rodents and primates. Spatiotemporal gait characteristics are largely similar between the Vietnamese pygmy dormouse and other small-bodied arboreal species analyzed. Most notable is the tendency for relatively high-speed asymmetrical gaits on large-diameter substrates and slower symmetrical lateral-sequence gaits on small-diameter substrates. Furthermore, for all species speed is primarily regulated by increasing stride frequency rather than length. Kinematics of the Vietnamese pygmy dormouse changed little in response substrate size and were primarily driven by speed. These findings suggest that the information gathered during ultrasonic scanning is sufficient to allow effective quadrupedal locomotion while moving on arboreal supports. The Vietnamese pygmy dormouse may serve as a model for the quadrupedal nocturnal ancestor of bats, which had started developing ultrasonic echolocation and reducing vision while likely occupying an arboreal niche.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Sonia Amanat
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Aleksandra A Panyutina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Wölfer J, Aschenbach T, Michel J, Nyakatura JA. Mechanics of Arboreal Locomotion in Swinhoe’s Striped Squirrels: A Potential Model for Early Euarchontoglires. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Differences between arboreal and terrestrial supports likely pose less contrasting functional demands on the locomotor system at a small body size. For arboreal mammals of small body size, asymmetrical gaits have been demonstrated to be advantageous to increase dynamic stability. Many of the extant arboreal squirrel-related rodents display a small body size, claws on all digits, and limited prehensility, a combination that was proposed to have characterized the earliest Euarchontoglires. Thus, motion analysis of such a modern analog could shed light onto the early locomotor evolution of eurarchontoglirans. In this study, we investigated how Swinhoe’s striped squirrels (Tamiops swinhoei; Scuiromorpha) adjust their locomotion when faced with different orientations on broad supports and simulated small branches. We simultaneously recorded high-Hz videos (501 trials) and support reaction forces (451 trials) of squirrels running on two types of instrumented trackways installed at either a 45° incline (we recorded locomotion on inclines and declines) or with a horizontal orientation. The striped squirrels almost exclusively used asymmetrical gaits with a preference for full bounds. Locomotion on simulated branches did not differ substantially from locomotion on the flat trackway. We interpreted several of the quantified adjustments on declines and inclines (in comparison to horizontal supports) as mechanisms to increase stability (e.g., by minimizing toppling moments) and as adjustments to the differential loading of fore- and hind limbs on inclined supports. Our data, in addition to published comparative data and similarities to the locomotion of other small arboreal rodents, tree shrews, and primates as well as a likely small body size at the crown-group node of Euarchontoglires, render a preference for asymmetrical gaits in early members of the clade plausible. This contributes to our understanding of the ancestral lifestyle of this mammalian ‘superclade’.
Collapse
|
6
|
Delciellos AC, Ribeiro SE, Prevedello JA, Vieira MV. Changes in aboveground locomotion of a scansorial opossum associated to habitat fragmentation. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Habitat fragmentation may affect animal movement patterns due to changes in intra- and interspecific interactions as well as in habitat quality and structure. Although the effects of habitat fragmentation on terrestrial movements are relatively well-known, it is unclear whether and how they affect aboveground locomotion of individuals. We compared aboveground locomotion of a Neotropical small mammal, the gray four-eyed opossum, Philander quica, between two forest fragments and two areas of continuous forest in the Brazilian Atlantic Forest. We 1) quantified support availability and tested for active selection of different support diameters and inclinations by individuals; and 2) compared support diameters and inclinations used (observed values) among areas and between males and females. Both males and females selected supports based on diameters and inclinations in forest fragments. In continuous forests sites, females selected supports based on diameters and inclinations, but males selected only support diameters. Frequency of support diameter use differed significantly between forest fragments and continuous forest sites and between males and females. Frequency of support inclination use differed significantly between areas only for females, and between sexes only in continuous forest sites. Sex-related differences in support selection and use are likely related to differences in body size and conflicting energetic and behavioral demands related to use of arboreal space. Site-related differences in aboveground movements likely reflect the effects of forest edges that result in increased use of thinner supports in forest fragments. These results complement our previous findings that habitat fragmentation reduces daily home ranges and increases the total amount of aboveground locomotion of P. quica, and provide a more thorough picture of how forest-dependent species are able to use and persist in small forest fragments.
Collapse
Affiliation(s)
- Ana Cláudia Delciellos
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Maracanã, CEP, Rio de Janeiro, RJ, Brazil
| | - Suzy Emidio Ribeiro
- Laboratório de Vertebrados, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP, Rio de Janeiro, RJ, Brazil
| | - Jayme Augusto Prevedello
- Laboratório de Ecologia de Paisagens, Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Maracanã, CEP, Rio de Janeiro, RJ, Brazil
| | - Marcus Vinícius Vieira
- Laboratório de Vertebrados, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Improving detectability of the harvest mouse ( Micromys minutus Pallas, 1771) by above ground live-trapping. MAMMALIA 2020. [DOI: 10.1515/mammalia-2018-0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Harvest mouse detectability represents a real issue for surveys, as usual ground-trap monitoring is known to fail to detect this species, especially in summer. The present study proposes to test ground versus aerial live-trapping efficiency for harvest mouse in summer, with a trapping design using paired ground and aerial traps over a 2-year survey in a reedbed. Over 10,720 trap-nights, the harvest mouse represented 85% of the 1078 small mammals captured, and it was the only species among five which was more often trapped above ground (n = 702) than on the ground (n = 213). Capture probability was significantly higher in aerial than in ground traps, with a slightly positive effect of leaf litter and, surprisingly, a negative effect of dense vegetation cover. Following these results, recommendations are made for harvest mouse monitoring.
Collapse
|
8
|
Nyakatura JA. Early primate evolution: insights into the functional significance of grasping from motion analyses of extant mammals. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John A Nyakatura
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität, Philippstraße, Berlin, Germany
| |
Collapse
|
9
|
Granatosky MC, Schmitt D, Hanna J. Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates. J Exp Biol 2018; 222:jeb.185702. [DOI: 10.1242/jeb.185702] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022]
Abstract
During quadrupedal walking, most primates utilize diagonal sequence diagonal couplet gaits, large limb excursions, and hindlimb-biased limb-loading. These gait characteristics are thought to be basal to the Order, but the selective pressure underlying these gait changes remains unknown. Some researchers have examined these characteristics during vertical climbing and propose that primate quadrupedal gait characteristics may have arisen due to the mechanical challenges of moving on vertical supports. Unfortunately, these studies are usually limited in scope and do not account for varying strategies based on body size or phylogeny. Here, we test the hypothesis that the spatiotemporal gait characteristics that are used during horizontal walking in primates are also present during vertical climbing irrespective of body size and phylogeny. We examined footfall patterns, diagonality, speed, and stride length in eight species of primates across a range of body masses. We found that during vertical climbing primates slow down, keep more limbs in contact with the substrate at any one time, and increase the frequency of lateral sequence gaits compared to horizontal walking. Taken together these characteristics are assumed to increase stability during locomotion. Phylogenetic relatedness and body size differences have little influence on locomotor patterns observed across species. These data reject the idea that the suite of spatiotemporal gait features observed in primates during horizontal walking are in some way evolutionarily linked to selective pressures associated with mechanical requirements of vertical climbing. These results also highlight the importance of behavioral flexibility for negotiating the challenges of locomotion in an arboreal environment.
Collapse
Affiliation(s)
- Michael C. Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Daniel Schmitt
- Evolutionary Anthropology, Duke University, Durham, NS, USA
| | - Jandy Hanna
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV, USA
| |
Collapse
|
10
|
Karantanis N, Rychlik L, Herrel A, Youlatos D. Arboreality in acacia rats (
Thallomys paedulcus
; Rodentia, Muridae): gaits and gait metrics. J Zool (1987) 2017. [DOI: 10.1111/jzo.12473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N.‐E. Karantanis
- Department of Zoology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| | - L. Rychlik
- Department of Systematic Zoology Institute of Environmental Biology Faculty of Biology Adam Mickiewicz University Poznań Poland
| | - A. Herrel
- Département d'Ecologie et de Gestion de la Biodiversité Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle Paris France
| | - D. Youlatos
- Department of Zoology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|