1
|
Yang L, Ding Z, Zhou J, Zhang S, Wang Q, Zheng K, Wang X, Chen L. Algorithmic detection of sleep-disordered breathing using respiratory signals: a systematic review. Physiol Meas 2024; 45:03TR02. [PMID: 38387048 DOI: 10.1088/1361-6579/ad2c13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Background and Objective. Sleep-disordered breathing (SDB) poses health risks linked to hypertension, cardiovascular disease, and diabetes. However, the time-consuming and costly standard diagnostic method, polysomnography (PSG), limits its wide adoption and leads to underdiagnosis. To tackle this, cost-effective algorithms using single-lead signals (like respiratory, blood oxygen, and electrocardiogram) have emerged. Despite respiratory signals being preferred for SDB assessment, a lack of comprehensive reviews addressing their algorithmic scope and performance persists. This paper systematically reviews 2012-2022 literature, covering signal sources, processing, feature extraction, classification, and application, aiming to bridge this gap and provide future research references.Methods. This systematic review followed the registered PROSPERO protocol (CRD42022385130), initially screening 342 papers, with 32 studies meeting data extraction criteria.Results. Respiratory signal sources include nasal airflow (NAF), oronasal airflow (OAF), and respiratory movement-related signals such as thoracic respiratory effort (TRE) and abdominal respiratory effort (ARE). Classification techniques include threshold rule-based methods (8), machine learning models (13), and deep learning models (11). The NAF-based algorithm achieved the highest average accuracy at 94.11%, surpassing 78.19% for other signals. Hypopnea detection sensitivity with single-source respiratory signals remained modest, peaking at 73.34%. The TRE and ARE signals proved to be reliable in identifying different types of SDB because distinct respiratory disorders exhibited different patterns of chest and abdominal motion.Conclusions. Multiple detection algorithms have been widely applied for SDB detection, and their accuracy is closely related to factors such as signal source, signal processing, feature selection, and model selection.
Collapse
Affiliation(s)
- Liqing Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, People's Republic of China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, People's Republic of China
| | - Zhimei Ding
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, People's Republic of China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, People's Republic of China
| | - Jiangjie Zhou
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, People's Republic of China
| | - Siyuan Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, People's Republic of China
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, People's Republic of China
| | - Qi Wang
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, People's Republic of China
| | - Kaige Zheng
- Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, People's Republic of China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, People's Republic of China
| | - Lin Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Artificial Intelligence and Service Robot Control Technology, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Drzazga J, Cyganek B. An LSTM Network for Apnea and Hypopnea Episodes Detection in Respiratory Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:5858. [PMID: 34502748 PMCID: PMC8434530 DOI: 10.3390/s21175858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
One of the most common sleep disorders is sleep apnea. It manifests itself by episodes of shallow breathing or pauses in breathing during the night. Diagnosis of this disease involves polysomnography examination, which is expensive. Alternatively, diagnostic doctors can be supported with recordings from the in-home polygraphy sensors. Furthermore, numerous attempts for providing an automated apnea episodes annotation algorithm have been made. Most of them, however, do not distinguish between apnea and hypopnea episodes. In this work, a novel solution for epoch-based annotation problem is presented. Utilizing an architecture based on the long short-term memory (LSTM) networks, the proposed model provides locations of sleep disordered breathing episodes and identifies them as either apnea or hypopnea. To achieve this, special pre- and postprocessing steps have been designed. The obtained labels can be then used for calculation of the respiratory event index (REI), which serves as a disease severity indicator. The input for the model consists of the oronasal airflow along with the thoracic and abdominal respiratory effort signals. Performance of the proposed architecture was verified on the SHHS-1 and PhysioNet Sleep databases, obtaining mean REI classification error of 9.24/10.52 with standard deviation of 11.61/7.92 (SHHS-1/PhysioNet). Normal breathing, hypopnea and apnea differentiation accuracy is assessed on both databases, resulting in the correctly classified samples percentage of 86.42%/84.35%, 49.30%/58.28% and 68.20%/69.50% for normal breathing, hypopnea and apnea classes, respectively. Overall accuracies are 80.66%/82.04%. Additionally, the effect of wake periods is investigated. The results show that the proposed model can be successfully used for both episode classification and REI estimation tasks.
Collapse
Affiliation(s)
- Jakub Drzazga
- Department of Electronics, AGH University of Science and Technology, 30-059 Kraków, Poland;
| | | |
Collapse
|
3
|
Cimr D, Studnicka F, Fujita H, Cimler R, Slegr J. Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 207:106149. [PMID: 34015736 DOI: 10.1016/j.cmpb.2021.106149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Background and Objectives Automatic detection of breathing disorders plays an important role in the early signalization of respiratory diseases. Measuring methods can be based on electrocardiogram (ECG), sound, oximetry, or respiratory analysis. However, these approaches require devices placed on the human body or they are prone to disturbance by environmental influences. To solve these problems, we proposed a heart contraction mechanical trigger for unobtrusive detection of respiratory disorders from the mechanical measurement of cardiac contractions. We designed a novel method to calculate this mechanical trigger purely from measured mechanical signals without the use of ECG. Methods The approach is a built-on calculation of the so-called euclidean arc length from the signals. In comparison to previous researches, this system does not require any equipment attached to a person. This is achieved by locating the tensometers on the bed. Data from sensors are fused by the Cartan curvatures method to beat-to-beat vector input for the Convolutional neural network (CNN) classifier. Results In sum, 2281 disordered and 5130 normal breathing samples was collected for analysis. The experiments with use of 10-fold cross validation show that accuracy, sensitivity, and specificity reach values of 96.37%, 92.46%, and 98.11% respectively. Conclusions By the approach for detection, the system offers a novel way for a completely unobtrusive diagnosis of breathing-related health problems. The proposed solution can effectively be deployed in all clinical or home environments.
Collapse
Affiliation(s)
- Dalibor Cimr
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
| | - Filip Studnicka
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
| | - Hamido Fujita
- Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam; DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Granada, Spain; Regional Research Center, Iwate Prefectural University, Iwate, Japan.
| | - Richard Cimler
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
| | - Jan Slegr
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
4
|
Uddin MB, Chow CM, Ling SH, Su SW. A novel algorithm for automatic diagnosis of sleep apnea from airflow and oximetry signals. Physiol Meas 2021; 42:015001. [PMID: 33296878 DOI: 10.1088/1361-6579/abd238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Sleep apnea significantly decreases the quality of life. The apnea hypopnea index (AHI) is the main indicator for sleep apnea diagnosis. This study explored a novel automatic algorithm to diagnose sleep apnea from nasal airflow (AF) and pulse oximetry (SpO2) signals. APPROACH Of the 988 polysomnography (PSG) records from the sleep heart health study (SHHS), 45 were randomly selected for the development of an algorithm and the remainder for validation (n = 943). The algorithm detects apnea events by a digitization process, following the determination of the peak excursion (peak-to-trough amplitude) from AF envelope. Hypopnea events were determined from the AF envelope and oxygen desaturation with correction to time lag in SpO2. Total sleep time (TST) was estimated from an optimized percentage of artefact-free total recording time. AHI was estimated from the number of detected events divided by the estimated TST. The estimated AHI was compared to the scored SHHS data for performance evaluation. MAIN RESULTS The validation showed good agreement between the estimated and scored AHI (intraclass correlation coefficient of 0.95 and mean ±95% limits of agreement of -1.6 ±12.5 events h-1). The diagnostic accuracies were found: 90.7%, 91%, and 96.7% for AHI cut-off ≥5, ≥15, and ≥30 respectively. SIGNIFICANCE The new algorithm is accurate over other existing methods for the automatic diagnosis of sleep apnea. It is applicable to any portable sleep screeners especially for the home diagnosis of sleep apnea.
Collapse
Affiliation(s)
- M B Uddin
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia.,Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - C M Chow
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Sleep Research Group, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - S H Ling
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia.,Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - S W Su
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia.,Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
5
|
Wang Y, Ji S, Yang T, Wang X, Wang H, Zhao X. An Efficient Method to Detect Sleep Hypopnea- Apnea Events Based on EEG Signals. IEEE ACCESS 2021; 9:641-650. [DOI: 10.1109/access.2020.3038486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Uddin MB, Moi Chow C, Ling SH, Su SW. A Per-sample Digitized Algorithm for Automatically Detecting Apnea and Hypopnea Events from Airflow and Oximetry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5339-5342. [PMID: 33019189 DOI: 10.1109/embc44109.2020.9176212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sleep apnea is a common sleep disorder that can significantly decrease the quality of life. An accurate and early diagnosis of sleep apnea is required before getting proper treatment. A reliable automated detection of sleep apnea can overcome the problems of manual diagnosis (scoring) due to variability in recording and scoring criteria (for example across Europe) and to inter-scorer variability. This study explored a novel automated algorithm to detect apnea and hypopnea events from airflow and pulse oximetry signals, extracted from 30 polysomnography records of the Sleep Heart Health Study. Apneas and hypopneas were manually scored by a trained sleep physiologist according to the updated 2017 American Academy of Sleep Medicine respiratory scoring rules. From pre-processed airflow, the peak signal excursion was precisely determined from the peak-to-trough amplitude using a sliding window, with a per-sample digitized algorithm for detecting apnea and hypopnea. For apnea, the peak signal excursion drop was operationalized at ≥85% and for hypopnea at ≥35% of its pre-event baseline. Using backward shifting of oximetry, hypopneas were filtered with ≥3% oxygen desaturation from its baseline. The performance of the automated algorithm was evaluated by comparing the detection with manual scoring (a standard practice). The sensitivity and positive predictive value of detecting apneas and hypopneas were respectively 98.1% and 95.3%. This automated algorithm is applicable to any portable sleep monitoring device for the accurate detection of sleep apnea.
Collapse
|
7
|
Erdenebayar U, Kim YJ, Park JU, Joo EY, Lee KJ. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 180:105001. [PMID: 31421606 DOI: 10.1016/j.cmpb.2019.105001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE This study demonstrates deep learning approaches with an aim to find the optimal method to automatically detect sleep apnea (SA) events from an electrocardiogram (ECG) signal. METHODS Six deep learning approaches were designed and implemented for automatic detection of SA events including deep neural network (DNN), one-dimensional (1D) convolutional neural networks (CNN), two-dimensional (2D) CNN, recurrent neural networks (RNN), long short-term memory, and gated-recurrent unit (GRU). Designed deep learning models were analyzed and compared in the performances. The ECG signal was pre-processed, normalized, and segmented into 10 s intervals. Subsequently, the signal was converted into a 2D form for analysis in the 2D CNN model. A dataset collected from 86 patients with SA was used. The training set comprised data from 69 of the patients, while the test set contained data from the remaining 17 patients. RESULTS The accuracy of the best-performing model was 99.0%, and the 1D CNN and GRU models had 99.0% recall rates. CONCLUSIONS The designed deep learning approaches performed better than those developed and tested in previous studies in terms of detecting SA events, and they could distinguish between apnea and hypopnea events using an ECG signal. The deep learning approaches such as 1D CNN and GRU can be helpful tools to automatically detect SA in sleep apnea screening and related studies.
Collapse
Affiliation(s)
- Urtnasan Erdenebayar
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 26493, Korea
| | - Yoon Ji Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 26493, Korea
| | - Jong-Uk Park
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 26493, Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Korea
| | - Kyoung-Joung Lee
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 26493, Korea.
| |
Collapse
|
8
|
Hsu MH, Fang SC, Wang FT, Chan HL, Huang HE, Yang SC. Sleep apnea assessment using declination duration-based global metrics from unobtrusive fiber optic sensors. Physiol Meas 2019; 40:075005. [PMID: 31361598 DOI: 10.1088/1361-6579/ab21b5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Sufficient sleep helps to restore the immune, nervous and cardiovascular systems, but is sometimes disturbed by sleep apnea (SA). The early diagnosis of sleep apnea is beneficial for the prevention of diseases. Polysomnography (PSG) recording provides comprehensive data for such assessment, but is not suitable for use at home due to discomfort during measurement and the difficulty of identification. This study proposes an unobtrusive measurement process by placing fiber optic sensors (FOSs) in a pillow (head-neck) or a bed mattress (thoracic-dorsal). APPROACH We test two approaches: drop degrees from the baseline to validate the capability of catching respiratory drops, and linear regression models based on a new global measure, the percentage of the total duration of respiratory declination (PTDRD), to estimate the hand-scored apnea/hypopnea index (AHI). MAIN RESULTS Based on data recorded from 63 adults, the drop degrees derived from respiratory signals exhibited statistical differences among central sleep apnea (CSA), obstructive sleep apnea (OSA) and normal breathing. The regression models based on the PTDRDs derived from head-neck FOS and thoracic-dorsal FOS also achieved good agreement with manually scored AHIs in Bland-Altman plots as well as oronasal airflow and thoracic wall movement. SIGNIFICANCE The aforementioned performance demonstrates the capability of the FOS measurement and the efficacy of the PTDRD metrics for SA assessment.
Collapse
Affiliation(s)
- Ming-Hung Hsu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
9
|
Yu H, Deng C, Sun J, Chen Y, Cao Y. Cascading detection model for prediction of apnea-hypopnea events based on nasal flow and arterial blood oxygen saturation. Sleep Breath 2019; 24:483-490. [PMID: 31278530 PMCID: PMC7289775 DOI: 10.1007/s11325-019-01886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022]
Abstract
Purpose Sleep apnea and hypopnea syndrome (SAHS) seriously affects sleep quality. In recent years, much research has focused on the detection of SAHS using various physiological signals and algorithms. The purpose of this study is to find an efficient model for detection of apnea-hypopnea events based on nasal flow and SpO2 signals. Methods A 60-s detector and a 10-s detector were cascaded for precise detection of apnea-hypopnea (AH) events. Random forests were adopted for classification of data segments based on morphological features extracted from nasal flow and arterial blood oxygen saturation (SpO2). Then the segments’ classification results were fed into an event detector to locate the start and end time of every AH event and predict the AH index (AHI). Results A retrospective study of 24 subjects’ polysomnography recordings was conducted. According to segment analysis, the cascading detection model reached an accuracy of 88.3%. While Pearson’s correlation coefficient between estimated AHI and reference AHI was 0.99, in the diagnosis of SAHS severity, the proposed method exhibited a performance with Cohen’s kappa coefficient of 0.76. Conclusions The cascading detection model is able to detect AH events and provide an estimate of AHI. The results indicate that it has the potential to be a useful tool for SAHS diagnosis.
Collapse
Affiliation(s)
- Hui Yu
- Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Chenyang Deng
- Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Jinglai Sun
- Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Yanjin Chen
- Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Yuzhen Cao
- Department of Biomedical Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
10
|
The Respiratory Fluctuation Index: A global metric of nasal airflow or thoracoabdominal wall movement time series to diagnose obstructive sleep apnea. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Uddin MB, Chow CM, Su SW. Classification methods to detect sleep apnea in adults based on respiratory and oximetry signals: a systematic review. Physiol Meas 2018; 39:03TR01. [PMID: 29446755 DOI: 10.1088/1361-6579/aaafb8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Huang W, Guo B, Shen Y, Tang X. A novel method to precisely detect apnea and hypopnea events by airflow and oximetry signals. Comput Biol Med 2017; 88:32-40. [DOI: 10.1016/j.compbiomed.2017.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 01/06/2023]
|
13
|
Park JU, Erdenebayar U, Joo EY, Lee KJ. Estimating sleep parameters using nasal pressure signals applicable to continuous positive airway pressure devices. Physiol Meas 2017; 38:1441-1455. [PMID: 28489018 DOI: 10.1088/1361-6579/aa723e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This paper proposes a method for classifying sleep-wakefulness and estimating sleep parameters using nasal pressure signals applicable to a continuous positive airway pressure (CPAP) device. APPROACH In order to classify the sleep-wakefulness states of patients with sleep-disordered breathing (SDB), apnea-hypopnea and snoring events are first detected. Epochs detected as SDB are classified as sleep, and time-domain- and frequency-domain-based features are extracted from the epochs that are detected as normal breathing. Subsequently, sleep-wakefulness is classified using a support vector machine (SVM) classifier in the normal breathing epoch. Finally, four sleep parameters-sleep onset, wake after sleep onset, total sleep time and sleep efficiency-are estimated based on the classified sleep-wakefulness. In order to develop and test the algorithm, 110 patients diagnosed with SDB participated in this study. Ninety of the subjects underwent full-night polysomnography (PSG) and twenty underwent split-night PSG. The subjects were divided into 50 patients of a training set (full/split: 42/8), 30 of a validation set (full/split: 24/6) and 30 of a test set (full/split: 24/6). MAIN RESULTS In the experiments conducted, sleep-wakefulness classification accuracy was found to be 83.2% in the test set, compared with the PSG scoring results of clinical experts. Furthermore, all four sleep parameters showed higher correlations than the results obtained via PSG (r ⩾ 0.84, p < 0.05). In order to determine whether the proposed method is applicable to CPAP, sleep-wakefulness classification performances were evaluated for each CPAP in the split-night PSG data. The results indicate that the accuracy and sensitivity of sleep-wakefulness classification by CPAP variation shows no statistically significant difference (p < 0.05). SIGNIFICANCE The contributions made in this study are applicable to the automatic classification of sleep-wakefulness states in CPAP devices and evaluation of the quality of sleep.
Collapse
Affiliation(s)
- Jong-Uk Park
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | | | | | | |
Collapse
|