1
|
Popat A, Yadav S, Obholz J, Hwang EA, Rehman AU, Sharma P. The Efficacy of Artificial Intelligence in the Detection and Management of Atrial Fibrillation. Cureus 2025; 17:e77135. [PMID: 39925585 PMCID: PMC11805596 DOI: 10.7759/cureus.77135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
The integration of artificial intelligence (AI) into medicine offers transformative potential, particularly in the detection and management of atrial fibrillation (AF). However, the intersection of AI and AF has not been comprehensively evaluated. This systematic review focuses specifically on the applications of AI in AF risk prediction, monitoring, and management. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a comprehensive search was conducted in PubMed and Google Scholar using terms such as artificial intelligence, deep learning, machine learning, artificial neural networks, and AF diagnosis. Methodological quality and risk of bias were assessed using the JBI critical appraisal checklist for qualitative research. Of the 109 studies screened, 39 met the inclusion criteria. Of these, 19 studies focused on AI's role in AF risk prediction, while 20 studies addressed its application in monitoring and management. Machine learning models, including AI-ECG approaches such as the optimal time-varying machine learning model and the observational medical outcomes partnership common data model, demonstrated superior sensitivity and specificity compared to traditional models (Framingham, atherosclerosis risk in communities (ARIC), congestive heart failure, hypertension, age ≥75, diabetes, stroke, vascular disease (CHADS-VASc), and cohorts for heart and aging research in genomic epidemiology model for atrial fibrillation (CHARGE-AF). Wearable devices, such as patch monitors and smartwatches, emerged as reliable, cost-effective, and noninvasive alternatives to implantable cardiac monitors for continuous AF detection and patient-centered management. Despite these advances, the reliability and consistency of AI-based tools remain variable across studies due to data heterogeneity and methodological inconsistencies. Identified gaps include the need for standardized, labeled datasets, robust validation through prospective clinical trials, and improved data governance frameworks to ensure reliability and reproducibility. In conclusion, AI holds immense potential for AF prediction and management, but addressing these challenges is essential for its integration into clinical practice.
Collapse
Affiliation(s)
- Apurva Popat
- Internal Medicine, Marshfield Clinic Health System, Marshfield, USA
| | - Sweta Yadav
- Internal Medicine, Marshfield Clinic Health System, Marshfield, USA
| | - Jacob Obholz
- Cardiology, Marshfield Clinic Health System, Marshfield, USA
| | - Elliot A Hwang
- Cardiology, Marshfield Clinic Health System, Marshfield, USA
| | - Ateeq U Rehman
- Internal Medicine, Marshfield Clinic Health System, Marshfield, USA
| | - Param Sharma
- Cardiology, Marshfield Clinic Health System, Marshfield, USA
| |
Collapse
|
2
|
Ahmed AES, Abbas Q, Daadaa Y, Qureshi I, Perumal G, Ibrahim MEA. A Residual-Dense-Based Convolutional Neural Network Architecture for Recognition of Cardiac Health Based on ECG Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:7204. [PMID: 37631741 PMCID: PMC10458913 DOI: 10.3390/s23167204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Cardiovascular disorders are often diagnosed using an electrocardiogram (ECG). It is a painless method that mimics the cyclical contraction and relaxation of the heart's muscles. By monitoring the heart's electrical activity, an ECG can be used to identify irregular heartbeats, heart attacks, cardiac illnesses, or enlarged hearts. Numerous studies and analyses of ECG signals to identify cardiac problems have been conducted during the past few years. Although ECG heartbeat classification methods have been presented in the literature, especially for unbalanced datasets, they have not proven to be successful in recognizing some heartbeat categories with high performance. This study uses a convolutional neural network (CNN) model to combine the benefits of dense and residual blocks. The objective is to leverage the benefits of residual and dense connections to enhance information flow, gradient propagation, and feature reuse, ultimately improving the model's performance. This proposed model consists of a series of residual-dense blocks interleaved with optional pooling layers for downsampling. A linear support vector machine (LSVM) classified heartbeats into five classes. This makes it easier to learn and represent features from ECG signals. We first denoised the gathered ECG data to correct issues such as baseline drift, power line interference, and motion noise. The impacts of the class imbalance are then offset by resampling techniques that denoise ECG signals. An RD-CNN algorithm is then used to categorize the ECG data for the various cardiac illnesses using the retrieved characteristics. On two benchmarked datasets, we conducted extensive simulations and assessed several performance measures. On average, we have achieved an accuracy of 98.5%, a sensitivity of 97.6%, a specificity of 96.8%, and an area under the receiver operating curve (AUC) of 0.99. The effectiveness of our suggested method for detecting heart disease from ECG data was compared with several recently presented algorithms. The results demonstrate that our method is lightweight and practical, qualifying it for continuous monitoring applications in clinical settings for automated ECG interpretation to support cardiologists.
Collapse
Affiliation(s)
- Alaa E. S. Ahmed
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
- Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Yassine Daadaa
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Imran Qureshi
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Ganeshkumar Perumal
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
| | - Mostafa E. A. Ibrahim
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (A.E.S.A.); (Y.D.); (I.Q.); (G.P.); (M.E.A.I.)
- Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha 13518, Qalubia, Egypt
| |
Collapse
|
3
|
Kumar S, Mallik A, Kumar A, Ser JD, Yang G. Fuzz-ClustNet: Coupled fuzzy clustering and deep neural networks for Arrhythmia detection from ECG signals. Comput Biol Med 2023; 153:106511. [PMID: 36608461 DOI: 10.1016/j.compbiomed.2022.106511] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Electrocardiogram (ECG) is a widely used technique to diagnose cardiovascular diseases. It is a non-invasive technique that represents the cyclic contraction and relaxation of heart muscles. ECG can be used to detect abnormal heart motions, heart attacks, heart diseases, or enlarged hearts by measuring the heart's electrical activity. Over the past few years, various works have been done in the field of studying and analyzing the ECG signals to detect heart diseases. In this work, we propose a deep learning and fuzzy clustering (Fuzz-ClustNet) based approach for Arrhythmia detection from ECG signals. We started by denoising the collected ECG signals to remove errors like baseline drift, power line interference, motion noise, etc. The denoised ECG signals are then segmented to have an increased focus on the ECG signals. We then perform data augmentation on the segmented images to counter the effects of the class imbalance. The augmented images are then passed through a CNN feature extractor. The extracted features are then passed to a fuzzy clustering algorithm to classify the ECG signals for their respective cardio diseases. We ran intensive simulations on two benchmarked datasets and evaluated various performance metrics. The performance of our proposed algorithm was compared with several recently proposed algorithms for heart disease detection from ECG signals. The obtained results demonstrate the efficacy of our proposed approach as compared to other contemporary algorithms.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Computer Science and Engineering, Delhi Technological University, Main Bawana Road, New Delhi 110042, India.
| | - Abhishek Mallik
- Department of Computer Science and Engineering, Delhi Technological University, Main Bawana Road, New Delhi 110042, India.
| | - Akshi Kumar
- Department of Computing & Mathematics, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| | - Javier Del Ser
- TECNALIA, Basque Research & Technology, Alliance (BRTA), 48160 Derio, Spain; University of the Basque Country, 48013 Bilbao, Spain.
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; Cardiovascular Research Centre, Royal Brompton Hospital, London SW3 6NP, United Kingdom.
| |
Collapse
|
4
|
Denysyuk HV, Pinto RJ, Silva PM, Duarte RP, Marinho FA, Pimenta L, Gouveia AJ, Gonçalves NJ, Coelho PJ, Zdravevski E, Lameski P, Leithardt V, Garcia NM, Pires IM. Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review. Heliyon 2023; 9:e13601. [PMID: 36852052 PMCID: PMC9958295 DOI: 10.1016/j.heliyon.2023.e13601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient's autonomy.
Collapse
Key Words
- AI, Artificial Intelligence
- BNN, Binarized Neural Network
- CNN, Concolutional Neural Networks
- Cardiovascular diseases
- DL, Deep Learning
- DNN, Deep Neural Networks
- Diagnosis
- ECG sensors
- ECG, Electrocardiography
- GAN, Generative Adversarial Networks
- GMM, Gaussian Mixture Model
- GNB, Gaussian Naive bayes
- GRU, Gated Recurrent Unit
- LASSO, Least Absolute Shrinkage and Selection Operator
- LDA, Linear Discriminant Analysis
- LR, Linear Regression
- LSTM, Long Short-Term Memory
- ML, Machine Learning
- MLP, Multiplayer Perceptron
- MLR, Multiple Linear Regression
- NLP, Natural Language Processing
- POAF, Postoperative Atrial Fibrillation
- RF, Random Forest
- RNN, Recurrent Neural Network
- SHAP, SHapley Additive exPlanations
- SVM, Support Vector Machine
- Systematic review
- WHO, World Health Organization
- kNN, k-nearest neighbors
Collapse
Affiliation(s)
| | - Rui João Pinto
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Pedro Miguel Silva
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Rui Pedro Duarte
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Francisco Alexandre Marinho
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Luís Pimenta
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - António Jorge Gouveia
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Norberto Jorge Gonçalves
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Paulo Jorge Coelho
- Polytechnic of Leiria, Leiria, Portugal
- Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal
| | - Eftim Zdravevski
- Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, Macedonia
| | - Petre Lameski
- Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, Macedonia
| | - Valderi Leithardt
- VALORIZA, Research Center for Endogenous Resources Valorization, Instituto Politécnico de Portalegre, 7300-555 Portalegre, Portugal
- COPELABS, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Nuno M. Garcia
- Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| | - Ivan Miguel Pires
- Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| |
Collapse
|
5
|
Next Generation Infectious Diseases Monitoring Gages via Incremental Federated Learning: Current Trends and Future Possibilities. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:1102715. [PMID: 36909972 PMCID: PMC9995206 DOI: 10.1155/2023/1102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 03/05/2023]
Abstract
Infectious diseases are always alarming for the survival of human life and are a key concern in the public health domain. Therefore, early diagnosis of these infectious diseases is a high demand for modern-era healthcare systems. Novel general infectious diseases such as coronavirus are infectious diseases that cause millions of human deaths across the globe in 2020. Therefore, early, robust recognition of general infectious diseases is the desirable requirement of modern intelligent healthcare systems. This systematic study is designed under Kitchenham guidelines and sets different RQs (research questions) for robust recognition of general infectious diseases. From 2018 to 2021, four electronic databases, IEEE, ACM, Springer, and ScienceDirect, are used for the extraction of research work. These extracted studies delivered different schemes for the accurate recognition of general infectious diseases through different machine learning techniques with the inclusion of deep learning and federated learning models. A framework is also introduced to share the process of detection of infectious diseases by using machine learning models. After the filtration process, 21 studies are extracted and mapped to defined RQs. In the future, early diagnosis of infectious diseases will be possible through wearable health monitoring cages. Moreover, these gages will help to reduce the time and death rate by detection of severe diseases at starting stage.
Collapse
|
6
|
Ragab M, Addas A. Low Complexity Encoder with Multilabel Classification and Image Captioning燤odel. COMPUTERS, MATERIALS & CONTINUA 2022; 72:4323-4337. [DOI: 10.32604/cmc.2022.026602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/22/2022] [Indexed: 10/28/2024]
|
7
|
Ou T, Cai X, Wang M, Guo F, Wu B. A Novel Method of Clinical Nursing under the Medical Internet of Things Technology. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2234457. [PMID: 34795880 PMCID: PMC8594999 DOI: 10.1155/2021/2234457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Internet of things technology began to spread to all industries of our lives; the application of medical internet of things in many hospitals highlighted its advantages and brought a lot of convenience to patients and medical staff. With the continuous progress of China's medical reform and the continuous improvement of patients' requirements for medical service quality, this paper discusses the application of medical internet of things in clinical nursing in ward, and the basic information collection, infusion, and mobile nursing were discussed and studied. Through the parallel control study of the laboratory itself, this paper evaluates whether the two different clinical measurement methods of medical internet of things technology and traditional technology are consistent in body temperature, pulse, respiration, and blood oxygen saturation. At the same time, it also deeply studies the value and advantages of internet of things technology in the application of other monitoring indicators in clinical nursing and analyses the problems in its application. The experimental data show that the two measurement methods with different principles can be completely replaced in clinical application, and the time efficiency of the new clinical nursing method under the medical internet of things technology in mapping body temperature, pulse, and respiration has been improved by 76.20% and 72.02%, respectively, surpassing the traditional information technology and realizing the intelligent, automatic, and standardized data acquisition method. It ensures the authenticity of data and the real-time of information flow and meets the needs of resource sharing and medical regional interconnection.
Collapse
Affiliation(s)
- Tingting Ou
- Vascular Channel Nursing Specialist Clinic, Quanzhou First Hospital, Quanzhou 362000, China
| | - Xuehua Cai
- Outpatient Department, Quanzhou First Hospital, Quanzhou 362000, China
| | - Meichun Wang
- Nursing Department, Quanzhou First Hospital, Quanzhou 362000, China
| | - Feirong Guo
- Vascular Channel Nursing Specialist Clinic, Quanzhou First Hospital, Quanzhou 362000, China
| | - Biyu Wu
- Nursing Department, Quanzhou First Hospital, Quanzhou 362000, China
| |
Collapse
|
8
|
A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Olier I, Ortega-Martorell S, Pieroni M, Lip GYH. How machine learning is impacting research in atrial fibrillation: implications for risk prediction and future management. Cardiovasc Res 2021; 117:1700-1717. [PMID: 33982064 PMCID: PMC8477792 DOI: 10.1093/cvr/cvab169] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 02/01/2023] Open
Abstract
There has been an exponential growth of artificial intelligence (AI) and machine learning (ML) publications aimed at advancing our understanding of atrial fibrillation (AF), which has been mainly driven by the confluence of two factors: the advances in deep neural networks (DeepNNs) and the availability of large, open access databases. It is observed that most of the attention has centred on applying ML for dvsetecting AF, particularly using electrocardiograms (ECGs) as the main data modality. Nearly a third of them used DeepNNs to minimize or eliminate the need for transforming the ECGs to extract features prior to ML modelling; however, we did not observe a significant advantage in following this approach. We also found a fraction of studies using other data modalities, and others centred in aims, such as risk prediction, AF management, and others. From the clinical perspective, AI/ML can help expand the utility of AF detection and risk prediction, especially for patients with additional comorbidities. The use of AI/ML for detection and risk prediction into applications and smart mobile health (mHealth) technology would enable ‘real time’ dynamic assessments. AI/ML could also adapt to treatment changes over time, as well as incident risk factors. Incorporation of a dynamic AI/ML model into mHealth technology would facilitate ‘real time’ assessment of stroke risk, facilitating mitigation of modifiable risk factors (e.g. blood pressure control). Overall, this would lead to an improvement in clinical care for patients with AF.
Collapse
Affiliation(s)
- Ivan Olier
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Sandra Ortega-Martorell
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Mark Pieroni
- School of Computer Science and Mathematics, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK.,Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, Liverpool John Moores University, Liverpool, UK.,Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
10
|
Prediction analytics of myocardial infarction through model-driven deep deterministic learning. Neural Comput Appl 2020. [DOI: 10.1007/s00521-019-04400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Dzobo K, Adotey S, Thomford NE, Dzobo W. Integrating Artificial and Human Intelligence: A Partnership for Responsible Innovation in Biomedical Engineering and Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 24:247-263. [PMID: 31313972 DOI: 10.1089/omi.2019.0038] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Historically, the term "artificial intelligence" dates to 1956 when it was first used in a conference at Dartmouth College in the US. Since then, the development of artificial intelligence has in part been shaped by the field of neuroscience. By understanding the human brain, scientists have attempted to build new intelligent machines capable of performing complex tasks akin to humans. Indeed, future research into artificial intelligence will continue to benefit from the study of the human brain. While the development of artificial intelligence algorithms has been fast paced, the actual use of most artificial intelligence (AI) algorithms in biomedical engineering and clinical practice is still markedly below its conceivably broader potentials. This is partly because for any algorithm to be incorporated into existing workflows it has to stand the test of scientific validation, clinical and personal utility, application context, and is equitable as well. In this context, there is much to be gained by combining AI and human intelligence (HI). Harnessing Big Data, computing power and storage capacities, and addressing societal issues emergent from algorithm applications, demand deploying HI in tandem with AI. Very few countries, even economically developed states, lack adequate and critical governance frames to best understand and steer the AI innovation trajectories in health care. Drug discovery and translational pharmaceutical research stand to gain from AI technology provided they are also informed by HI. In this expert review, we analyze the ways in which AI applications are likely to traverse the continuum of life from birth to death, and encompassing not only humans but also all animal, plant, and other living organisms that are increasingly touched by AI. Examples of AI applications include digital health, diagnosis of diseases in newborns, remote monitoring of health by smart devices, real-time Big Data analytics for prompt diagnosis of heart attacks, and facial analysis software with consequences on civil liberties. While we underscore the need for integration of AI and HI, we note that AI technology does not have to replace medical specialists or scientists and rather, is in need of such expert HI. Altogether, AI and HI offer synergy for responsible innovation and veritable prospects for improving health care from prevention to diagnosis to therapeutics while unintended consequences of automation emergent from AI and algorithms should be borne in mind on scientific cultures, work force, and society at large.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory 7925, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sampson Adotey
- International Development Innovation Network, D-Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nicholas E Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Witness Dzobo
- Pathology and Immunology Department, University Hospital Southampton, Mail Point B, Tremona Road, Southampton, UK.,University of Portsmouth, Faculty of Science, St Michael's Building, White Swan Road, Portsmouth, UK
| |
Collapse
|