1
|
Johnson TN, Batchelor HK, Goelen J, Horniblow RD, Dinh J. Combining data on the bioavailability of midazolam and physiologically-based pharmacokinetic modeling to investigate intestinal CYP3A4 ontogeny. CPT Pharmacometrics Syst Pharmacol 2024; 13:1570-1581. [PMID: 38923249 PMCID: PMC11533100 DOI: 10.1002/psp4.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pediatric physiologically-based modeling in drug development has grown in the past decade and optimizing the underlying systems parameters is important in relation to overall performance. In this study, variation of clinical oral bioavailability of midazolam as a function of age is used to assess the underlying ontogeny models for intestinal CYP3A4. Data on midazolam bioavailability in adults and children and different ontogeny patterns for intestinal CYP3A4 were first collected from the literature. A pediatric PBPK model was then used to assess six different ontogeny models in predicting bioavailability from preterm neonates to adults. The average fold error ranged from 0.7 to 1.38, with the rank order of least to most biased model being No Ontogeny < Upreti = Johnson < Goelen < Chen < Kiss. The absolute average fold error ranged from 1.17 to 1.64 with the rank order of most to least precise being Johnson > Upreti > No Ontogeny > Goelen > Kiss > Chen. The optimal ontogeny model is difficult to discern when considering the possible influence of CYP3A5 and other population variability; however, this study suggests that from term neonates and older a faster onset Johnson model with a lower fraction at birth may be close to this. For inclusion in other PBPK models, independent verification will be needed to confirm these results. Further research is needed in this area both in terms of age-related changes in midazolam and similar drug bioavailability and intestinal CYP3A4 ontogeny.
Collapse
Affiliation(s)
| | - Hannah K. Batchelor
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Jan Goelen
- Centre for Neonatal and Paediatric Infection, Antimicrobial Resistance Research Group, St George'sUniversity of LondonLondonUK
| | - Richard D. Horniblow
- School of Biomedical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
2
|
Zhu J, Zhou S, Wang L, Zhao Y, Wang J, Zhao T, Li T, Shao F. Characterization of Pediatric Rectal Absorption, Drug Disposition, and Sedation Level for Midazolam Gel Using Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling. Mol Pharm 2024; 21:2187-2197. [PMID: 38551309 DOI: 10.1021/acs.molpharmaceut.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This study aims to explore and characterize the role of pediatric sedation via rectal route. A pediatric physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) model of midazolam gel was built and validated to support dose selection for pediatric clinical trials. Before developing the rectal PBPK model, an intravenous PBPK model was developed to determine drug disposition, specifically by describing the ontogeny model of the metabolic enzyme. Pediatric rectal absorption was developed based on the rectal PBPK model of adults. The improved Weibull function with permeability, surface area, and fluid volume parameters was used to extrapolate pediatric rectal absorption. A logistic regression model was used to characterize the relationship between the free concentrations of midazolam and the probability of sedation. All models successfully described the PK profiles with absolute average fold error (AAFE) < 2, especially our intravenous PBPK model that extended the predicted age to preterm. The simulation results of the PD model showed that when the free concentrations of midazolam ranged from 3.9 to 18.4 ng/mL, the probability of "Sedation" was greater than that of "Not-sedation" states. Combined with the rectal PBPK model, the recommended sedation doses were in the ranges of 0.44-2.08 mg/kg for children aged 2-3 years, 0.35-1.65 mg/kg for children aged 4-7 years, 0.24-1.27 mg/kg for children aged 8-12 years, and 0.20-1.10 mg/kg for adolescents aged 13-18 years. Overall, this model mechanistically quantified drug disposition and effect of midazolam gel in the pediatric population, accurately predicted the observed clinical data, and simulated the drug exposure for sedation that will inform dose selection for following pediatric clinical trials.
Collapse
Affiliation(s)
- Jinying Zhu
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Lu Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuqing Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jie Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tangping Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China
| | - Tongtong Li
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Kang DW, Kim JH, Choi GW, Cho SJ, Cho HY. Physiologically-based pharmacokinetic model for evaluating gender-specific exposures of N-nitrosodimethylamine (NDMA). Arch Toxicol 2024; 98:821-835. [PMID: 38127128 DOI: 10.1007/s00204-023-03652-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
N-nitrosodimethylamine (NDMA) is classified as a human carcinogen and could be produced by both natural and industrial processes. Although its toxicity and histopathology have been well-studied in animal species, there is insufficient data on the blood and tissue exposures that can be correlated with the toxicity of NDMA. The purpose of this study was to evaluate gender-specific pharmacokinetics/toxicokinetics (PKs/TKs), tissue distribution, and excretion after the oral administration of three different doses of NDMA in rats using a physiologically-based pharmacokinetic (PBPK) model. The major target tissues for developing the PBPK model and evaluating dose metrics of NDMA included blood, gastrointestinal (GI) tract, liver, kidney, lung, heart, and brain. The predictive performance of the model was validated using sensitivity analysis, (average) fold error, and visual inspection of observations versus predictions. Then, a Monte Carlo simulation was performed to describe the magnitudes of inter-individual variability and uncertainty of the single model predictions. The developed PBPK model was applied for the exposure simulation of daily oral NDMA to estimate blood concentration ranges affecting health effects following acute-duration (≤ 14 days), intermediate-duration (15-364 days), and chronic-duration (≥ 365 days) intakes. The results of the study could be used as a scientific basis for interpreting the correlation between in vivo exposures and toxicological effects of NDMA.
Collapse
Affiliation(s)
- Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
4
|
van der Heijden JEM, Freriksen JJM, de Hoop-Sommen MA, Greupink R, de Wildt SN. Physiologically-Based Pharmacokinetic Modeling for Drug Dosing in Pediatric Patients: A Tutorial for a Pragmatic Approach in Clinical Care. Clin Pharmacol Ther 2023; 114:960-971. [PMID: 37553784 DOI: 10.1002/cpt.3023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
It is well-accepted that off-label drug dosing recommendations for pediatric patients should be based on the best available evidence. However, the available traditional evidence is often low. To bridge this gap, physiologically-based pharmacokinetic (PBPK) modeling is a scientifically well-founded tool that can be used to enable model-informed dosing (MID) recommendations in children in clinical practice. In this tutorial, we provide a pragmatic, PBPK-based pediatric modeling workflow. For this approach to be successfully implemented in pediatric clinical practice, a thorough understanding of the model assumptions and limitations is required. More importantly, careful evaluation of an MID approach within the context of overall benefits and the potential risks is crucial. The tutorial is aimed to help modelers, researchers, and clinicians, to effectively use PBPK simulations to support pediatric drug dosing.
Collapse
Affiliation(s)
- Joyce E M van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolien J M Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marika A de Hoop-Sommen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Pasquiers B, Benamara S, Felices M, Ternant D, Declèves X, Puszkiel A. Translation of Monoclonal Antibodies Pharmacokinetics from Animal to Human Using Physiologically Based Modeling in Open Systems Pharmacology (OSP) Suite: A Retrospective Analysis of Bevacizumab. Pharmaceutics 2023; 15:2129. [PMID: 37631343 PMCID: PMC10459442 DOI: 10.3390/pharmaceutics15082129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Interspecies translation of monoclonal antibodies (mAbs) pharmacokinetics (PK) in presence of target-mediated drug disposition (TMDD) is particularly challenging. Incorporation of TMDD in physiologically based PK (PBPK) modeling is recent and needs to be consolidated and generalized to provide better prediction of TMDD regarding inter-species translation during preclinical and clinical development steps of mAbs. The objective of this study was to develop a generic PBPK translational approach for mAbs using the open-source software (PK-Sim® and Mobi®). The translation of bevacizumab based on data in non-human primates (NHP), healthy volunteers (HV), and cancer patients was used as a case example for model demonstration purpose. A PBPK model for bevacizumab concentration-time data was developed using data from literature and the Open Systems Pharmacology (OSP) Suite version 10. PK-sim® was used to build the linear part of bevacizumab PK (mainly FcRn-mediated), whereas MoBi® was used to develop the target-mediated part. The model was first developed for NHP and used for a priori PK prediction in HV. Then, the refined model obtained in HV was used for a priori prediction in cancer patients. A priori predictions were within 2-fold prediction error (predicted/observed) for both area under the concentration-time curve (AUC) and maximum concentration (Cmax) and all the predicted concentrations were within 2-fold average fold error (AFE) and average absolute fold error (AAFE). Sensitivity analysis showed that FcRn-mediated distribution and elimination processes must be accounted for at all mAb concentration levels, whereas the lower the mAb concentration, the more significant the target-mediated elimination. This project is the first step to generalize the full PBPK translational approach in Model-Informed Drug Development (MIDD) of mAbs using OSP Suite.
Collapse
Affiliation(s)
- Blaise Pasquiers
- Inserm UMR-S1144, Faculty of Pharmacy, Université Paris Cité, 75006 Paris, France (A.P.)
- PhinC Development, 91300 Massy, France
| | | | | | - David Ternant
- Faculty of Medicine, Université de Tours, EA 4245 T2I, 37032 Tours, France
- Service de Pharmacologie Médicale, CHRU de Tours, 37000 Tours, France
| | - Xavier Declèves
- Inserm UMR-S1144, Faculty of Pharmacy, Université Paris Cité, 75006 Paris, France (A.P.)
- Biologie du Médicament—Toxicologie, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 75014 Paris, France
| | - Alicja Puszkiel
- Inserm UMR-S1144, Faculty of Pharmacy, Université Paris Cité, 75006 Paris, France (A.P.)
- Biologie du Médicament—Toxicologie, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 75014 Paris, France
| |
Collapse
|
6
|
Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters. Pharmaceutics 2023; 15:pharmaceutics15030838. [PMID: 36986698 PMCID: PMC10058671 DOI: 10.3390/pharmaceutics15030838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A fixed-dose combination of pyronaridine and artesunate, one of the artemisinin-based combination therapies, has been used as a potent antimalarial treatment regimen. Recently, several studies have reported the antiviral effects of both drugs against severe acute respiratory syndrome coronavirus two (SARS-CoV-2). However, there are limited data on the pharmacokinetics (PKs), lung, and trachea exposures that could be correlated with the antiviral effects of pyronaridine and artesunate. The purpose of this study was to evaluate the pharmacokinetics, lung, and trachea distribution of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) using a minimal physiologically-based pharmacokinetic (PBPK) model. The major target tissues for evaluating dose metrics are blood, lung, and trachea, and the nontarget tissues were lumped together into the rest of the body. The predictive performance of the minimal PBPK model was evaluated using visual inspection between observations and model predictions, (average) fold error, and sensitivity analysis. The developed PBPK models were applied for the multiple-dosing simulation of daily oral pyronaridine and artesunate. A steady state was reached about three to four days after the first dosing of pyronaridine and an accumulation ratio was calculated to be 1.8. However, the accumulation ratio of artesunate and dihydroartemisinin could not be calculated since the steady state of both compounds was not achieved by daily multiple dosing. The elimination half-life of pyronaridine and artesunate was estimated to be 19.8 and 0.4 h, respectively. Pyronaridine was extensively distributed to the lung and trachea with the lung-to-blood and trachea-to-blood concentration ratios (=Cavg,tissue/Cavg,blood) of 25.83 and 12.41 at the steady state, respectively. Also, the lung-to-blood and trachea-to-blood AUC ratios for artesunate (dihydroartemisinin) were calculated to be 3.34 (1.51) and 0.34 (0.15). The results of this study could provide a scientific basis for interpreting the dose–exposure–response relationship of pyronaridine and artesunate for COVID-19 drug repurposing.
Collapse
|
7
|
Zazo H, Colino CI, Gutiérrez-Millán C, Cordero AA, Bartneck M, Lanao JM. Physiologically Based Pharmacokinetic (PBPK) Model of Gold Nanoparticle-Based Drug Delivery System for Stavudine Biodistribution. Pharmaceutics 2022; 14:pharmaceutics14020406. [PMID: 35214138 PMCID: PMC8875329 DOI: 10.3390/pharmaceutics14020406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Computational modelling has gained attention for evaluating nanoparticle-based drug delivery systems. Physiologically based pharmacokinetic (PBPK) modelling provides a mechanistic approach for evaluating drug biodistribution. The aim of this work is to develop a specific PBPK model to simulate stavudine biodistribution after the administration of a 40 nm gold nanoparticle-based drug delivery system in rats. The model parameters used have been obtained from literature, in vitro and in vivo studies, and computer optimization. Based on these, the PBPK model was built, and the compartments included were considered as permeability rate-limited tissues. In comparison with stavudine solution, a higher biodistribution of stavudine into HIV reservoirs and the modification of pharmacokinetic parameters such as the mean residence time (MRT) have been observed. These changes are particularly noteworthy in the liver, which presents a higher partition coefficient (from 0.27 to 0.55) and higher MRT (from 1.28 to 5.67 h). Simulated stavudine concentrations successfully describe these changes in the in vivo study results. The average fold error of predicted concentrations after the administration of stavudine-gold nanoparticles was within the 0.5–2-fold error in all of the tissues. Thus, this PBPK model approach may help with the pre-clinical extrapolation to other administration routes or the species of stavudine gold nanoparticles.
Collapse
Affiliation(s)
- Hinojal Zazo
- Area of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Avda Lcdo Méndez Nieto, 37007 Salamanca, Spain; (H.Z.); (C.G.-M.); (A.A.C.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Clara I. Colino
- Area of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Avda Lcdo Méndez Nieto, 37007 Salamanca, Spain; (H.Z.); (C.G.-M.); (A.A.C.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (C.I.C.); (J.M.L.); Tel.: +34-923-294-536 (C.I.C.)
| | - Carmen Gutiérrez-Millán
- Area of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Avda Lcdo Méndez Nieto, 37007 Salamanca, Spain; (H.Z.); (C.G.-M.); (A.A.C.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Andres A. Cordero
- Area of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Avda Lcdo Méndez Nieto, 37007 Salamanca, Spain; (H.Z.); (C.G.-M.); (A.A.C.)
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany;
| | - José M. Lanao
- Area of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Avda Lcdo Méndez Nieto, 37007 Salamanca, Spain; (H.Z.); (C.G.-M.); (A.A.C.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (C.I.C.); (J.M.L.); Tel.: +34-923-294-536 (C.I.C.)
| |
Collapse
|
8
|
Physiologically Based Pharmacokinetic Modeling of Transdermal Selegiline and Its Metabolites for the Evaluation of Disposition Differences between Healthy and Special Populations. Pharmaceutics 2020; 12:pharmaceutics12100942. [PMID: 33008144 PMCID: PMC7600566 DOI: 10.3390/pharmaceutics12100942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
A physiologically based pharmacokinetic (PBPK) model of selegiline (SEL), and its metabolites, was developed in silico to evaluate the disposition differences between healthy and special populations. SEL is metabolized to methamphetamine (MAP) and desmethyl selegiline (DMS) by several CYP enzymes. CYP2D6 metabolizes the conversion of MAP to amphetamine (AMP), while CYP2B6 and CYP3A4 predominantly mediate the conversion of DMS to AMP. The overall prediction error in simulated PK, using the developed PBPK model, was within 0.5-1.5-fold after intravenous and transdermal dosing in healthy and elderly populations. Simulation results generated in the special populations demonstrated that a decrease in cardiac output is a potential covariate that affects the SEL exposure in renally impaired (RI) and hepatic impaired (HI) subjects. A decrease in CYP2D6 levels increased the systemic exposure of MAP. DMS exposure increased due to a reduction in the abundance of CYP2B6 and CYP3A4 in RI and HI subjects. In addition, an increase in the exposure of the primary metabolites decreased the exposure of AMP. No significant difference between the adult and adolescent populations, in terms of PK, were observed. The current PBPK model predictions indicate that subjects with HI or RI may require closer clinical monitoring to identify any untoward effects associated with the administration of transdermal SEL patch.
Collapse
|