1
|
Galdino ACM, Viganor L, de Castro AA, da Cunha EFF, Mello TP, Mattos LM, Pereira MD, Hunt MC, O'Shaughnessy M, Howe O, Devereux M, McCann M, Ramalho TC, Branquinha MH, Santos ALS. Disarming Pseudomonas aeruginosa Virulence by the Inhibitory Action of 1,10-Phenanthroline-5,6-Dione-Based Compounds: Elastase B (LasB) as a Chemotherapeutic Target. Front Microbiol 2019; 10:1701. [PMID: 31428062 PMCID: PMC6688126 DOI: 10.3389/fmicb.2019.01701] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Elastase B (lasB) is a multifunctional metalloenzyme secreted by the gram-negative pathogen Pseudomonas aeruginosa, and this enzyme orchestrates several physiopathological events during bacteria-host interplays. LasB is considered to be a potential target for the development of an innovative chemotherapeutic approach, especially against multidrug-resistant strains. Recently, our group showed that 1,10-phenanthroline-5,6-dione (phendione), [Ag(phendione)2]ClO4 (Ag-phendione) and [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione) had anti-P. aeruginosa action against both planktonic- and biofilm-growing cells. In the present work, we have evaluated the effects of these compounds on the (i) interaction with the lasB active site using in silico approaches, (ii) lasB proteolytic activity by using a specific fluorogenic peptide substrate, (iii) lasB gene expression by real time-polymerase chain reaction, (iv) lasB protein secretion by immunoblotting, (v) ability to block the damages induced by lasB on a monolayer of lung epithelial cells, and (vi) survivability of Galleria mellonella larvae after being challenged with purified lasB and lasB-rich bacterial secretions. Molecular docking analyses revealed that phendione and its Ag+ and Cu2+ complexes were able to interact with the amino acids forming the active site of lasB, particularly Cu-phendione which exhibited the most favorable interaction energy parameters. Additionally, the test compounds were effective inhibitors of lasB activity, blocking the in vitro cleavage of the peptide substrate, aminobenzyl-Ala-Gly-Leu-Ala-p-nitrobenzylamide, with Cu-phendione having the best inhibitory action (K i = 90 nM). Treating living bacteria with a sub-inhibitory concentration (½ × MIC value) of the test compounds caused a significant reduction in the expression of the lasB gene as well as its mature protein production/secretion. Further, Ag-phendione and Cu-phendione offered protective action for lung epithelial cells, reducing the A549 monolayer damage by approximately 32 and 42%, respectively. Interestingly, Cu-phendione mitigated the toxic effect of both purified lasB molecules and lasB-containing bacterial secretions in the in vivo model, increasing the survival time of G. mellonella larvae. Collectively, these data reinforce the concept of lasB being a veritable therapeutic target and phendione-based compounds (mainly Cu-phendione) being prospective anti-virulence drugs against P. aeruginosa.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Postgraduate Program in Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Viganor
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | | | | | - Thaís P Mello
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa M Mattos
- Postgraduate Program in Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos D Pereira
- Postgraduate Program in Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mary C Hunt
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Megan O'Shaughnessy
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Orla Howe
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Michael Devereux
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | - Marta H Branquinha
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Postgraduate Program in Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Pérez-Reytor D, Jaña V, Pavez L, Navarrete P, García K. Accessory Toxins of Vibrio Pathogens and Their Role in Epithelial Disruption During Infection. Front Microbiol 2018; 9:2248. [PMID: 30294318 PMCID: PMC6158335 DOI: 10.3389/fmicb.2018.02248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Gastrointestinal episodes associated with Vibrio species have been rising worldwide in the last few years. Consequently, it is important to comprehend how occurs the production of diarrhea, to establish new preventive and therapeutic measures. Besides the classical CT and TCP toxins, Zot, RTX, and Ace among others have been deeply studied in V. cholerae. However, in other Vibrio species of clinical interest, where some of these toxins have been reported, there is practically no information. Zot activates a cascade of signals inside of the cell that increase the permeability of epithelial barrier, while RTX causes depolymerization of the actin cytoskeleton and Ace increases the permeability of intestinal cell monolayers. The goal of this study is to acquire information about the distribution of these toxins in human pathogenic Vibrios and to review the progress in the study of their role in the intestinal epithelium during infection.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Victor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Leonardo Pavez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
3
|
Liu R, Qiu L, Cheng Q, Zhang H, Wang L, Song L. Evidence for Cleavage of the Metalloprotease Vsm from Vibrio splendidus Strain JZ6 by an M20 Peptidase (PepT-like Protein) at Low Temperature. Front Microbiol 2016; 7:1684. [PMID: 27826294 PMCID: PMC5078317 DOI: 10.3389/fmicb.2016.01684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Metalloprotease Vsm is a major extracellular virulence factor of Vibrio splendidus. The toxicity of Vsm from V. splendidus strain JZ6 has been characterized, and production of this virulence factor proved to be temperature-regulated. The present study provides evidence that two forms (JZE1 and JZE2) of Vsm protein exist in extracellular products (ECPs) of strain JZ6, and a significant conversion of these two forms was detected by SDS-PAGE and immunoblotting analyses of samples obtained from cells grown at 4, 10, 16, 20, 24, and 28°C. Mass spectroscopy confirmed that JZE1 was composed only of the peptidase_M4 domain of Vsm, and JZE2 contained both the PepSY domain and the peptidase_M4 domain. An M20 peptidase T-like protein (PepTL) was screened from the transcriptome data of strain JZ6, which was considered as a crucial molecule to produce the active Vsm (JZE1) by cleavage of the propeptide. Similar to that of Vsm, PepTL mRNA accumulation was highest at 4°C (836.82-fold of that at 28°C), decreased with increasing of temperature and reached its lowest level at 28°C. Deletion of the gene encoding the PepTL resulted in a mutant strain that did not produce the JZE1 cleavage product. The peptidase activity of PepTL recombinant protein (rPepTL) was confirmed by cleaving the Vsm in ECPs with an in vitro degradation reaction. These results demonstrate that PepTL participates in activating Vsm in strain JZ6 by proteolytic cleavage at low temperature.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University Dalian, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University Dalian, China
| | - Linsheng Song
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University Dalian, China
| |
Collapse
|
4
|
Benitez JA, Silva AJ. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities. Toxicon 2016; 115:55-62. [PMID: 26952544 DOI: 10.1016/j.toxicon.2016.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/22/2023]
Abstract
Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera.
Collapse
Affiliation(s)
- Jorge A Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| | - Anisia J Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| |
Collapse
|
5
|
Yang J, Zhao HL, Ran LY, Li CY, Zhang XY, Su HN, Shi M, Zhou BC, Chen XL, Zhang YZ. Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci Rep 2015; 5:9936. [PMID: 25905792 PMCID: PMC4407726 DOI: 10.1038/srep09936] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/12/2015] [Indexed: 01/01/2023] Open
Abstract
Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1’ positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1’ sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection.
Collapse
Affiliation(s)
- Jie Yang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Hui-Lin Zhao
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Li-Yuan Ran
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Chun-Yang Li
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xi-Ying Zhang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Hai-Nan Su
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Mei Shi
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bai-Cheng Zhou
- Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Xiu-Lan Chen
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| | - Yu-Zhong Zhang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Gökçen A, Vilcinskas A, Wiesner J. Biofilm-degrading enzymes from Lysobacter gummosus. Virulence 2014; 5:378-87. [PMID: 24518560 DOI: 10.4161/viru.27919] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Biofilm-degrading enzymes could be used for the gentle cleaning of industrial and medical devices and the manufacture of biofilm-resistant materials. We therefore investigated 20 species and strains of the bacterial genus Lysobacter for their ability to degrade experimental biofilms formed by Staphylococcus epidermidis, a common nosocomial pathogen typically associated with device-related infections. The highest biofilm-degradation activity was achieved by L. gummosus. The corresponding enzymes were identified by sequencing the L. gummosus genome. Partial purification of the biofilm-degrading activity from an extract of extracellular material followed by peptide mass fingerprinting resulted in the identification of two peptidases (α-lytic protease and β-lytic metalloendopeptidase) that were predicted to degrade bacterial cell walls. In addition, we identified two isoforms of a lysyl endopeptidase and an enzyme similar to metalloproteases from Vibrio spp. Potential peptidoglycan-binding C-terminal fragments of two OmpA-like proteins also co-purified with the biofilm-degrading activity. The L. gummosus genome was found to encode five isoenzymes of α-lytic protease and three isoenzymes of lysyl endopeptidase. These results indicated that the extracellular digestion of biofilms by L. gummosus depends on multiple bacteriolytic and proteolytic enzymes, which could now be exploited for biofilm control.
Collapse
Affiliation(s)
- Anke Gökçen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Bioresources; Gießen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Bioresources; Gießen, Germany; Justus-Liebig University of Gießen; Institute of Phytopathology and Applied Zoology at the Interdisciplinary Research Center; Gießen, Germany
| | - Jochen Wiesner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Bioresources; Gießen, Germany
| |
Collapse
|
7
|
Yang L, Tang Z, Liu W, Xiao J, Hu S, Yang L, Liu W, Deng H, Feng Q. Evolutional and functional analysis of a serine protease in Spodoptera litura. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:121-135. [PMID: 22930521 DOI: 10.1002/arch.21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Spodoptera litura is a threatening agricultural insect in tropical and subtropical areas and accounts for tremendous annual crop losses. As seen in virtually all insect species, serine proteases (SPs) are crucial to S. litura. The expression pattern of SPs from the midgut of S. litura was studied through expressed sequence tags (ESTs) analysis. One of SP (SlSP1) was chosen for detailed study, because the expression of the gene was midgut and larvae specific. SlSP1 was conducted as a model of its evolution, structure, and potential binding activity with corresponding substrates. SlSP1 is composed of 255 amino acids including a signal peptide at N-terminal followed by a putative activation peptide and the mature protein along with five putative phosphorylation sites, three disulphide bridges, and two N-glycosylation positions. At least nine conserved motifs were obtained in multiple sequence alignments. Some conserved residues, such as the catalytic triad His84, Asp127, and Ser229 as well as six cysteines at position 66, 82, 194, 211, 223, and 247, were examined. After homology modeling and molecular dynamics simulation, the resultant three-dimensional (3D) structure of SlSP1 was docked with the substrates 2PTC-Arg and 2PTC-Lys, respectively. Molecular Mechanic/Poisson-Boltzmann surface area analysis was applied to anticipate optimal binding mode and crucial active sites of this enzyme. The residues Trp28, Gly187, Aso188, Arg249, Ile250, Lys246, and Lys278 are crucial for the substrate binding and molecule process. This information can be used in logical design of SPs inhibitors. New inhibitors may be a basis for development of a new pest control technology.
Collapse
Affiliation(s)
- Li Yang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Poras H, Duquesnoy S, Dange E, Pinon A, Vialette M, Fournié-Zaluski MC, Ouimet T. Highly sensitive quenched fluorescent substrate of Legionella major secretory protein (msp) based on its structural analysis. J Biol Chem 2012; 287:20221-30. [PMID: 22528499 DOI: 10.1074/jbc.m111.334334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila has been shown to secrete a protease termed major secretory protein (Msp). This protease belongs to the M4 family of metalloproteases and shares 62.9% sequence similarity with pseudolysin (EC 3.4.24.26). With the aim of developing a specific enzymatic assay for the detection and quantification of Msp, the Fluofast substrate library was screened using both enzymes in parallel. Moreover, based on the crystal structure of pseudolysin, a model of the Msp structure was built. Screening of the peptide library identified a lead substrate specifically cleaved by Msp that was subsequently optimized by rational design. The proposed model for Msp is consistent with the enzymatic characteristics of the studied peptide substrates and provides new structural information useful for the characterization of the protease. This study leads to the identification of the first selective and high affinity substrate for Msp that is able to detect picomolar concentrations of the purified enzyme. The identified substrate could be useful for the development of a novel method for the rapid detection of Legionella.
Collapse
Affiliation(s)
- Hervé Poras
- Pharmaleads, Paris BioPark, 11 Rue Watt 75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wu B, Sun J, Cheng SP, Gu JD, Li AM, Zhang XX. Comparative analysis of binding affinities between styrene and mammalian CYP2E1 by bioinformatics approaches. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1041-1046. [PMID: 21424721 DOI: 10.1007/s10646-011-0643-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
Cytochrome P450 2E1 (CYP2E1) is a cytochrome P450 enzyme involved in styrene metabolism. This study compared the binding affinities between styrene and 11 mammalian CYP2E1 systems using bioinformatics methods. Firstly, amino acid sequences of CYP2E1s were obtained from the Swiss-Prot database. Then, taking the crystal structure of human CYP2E1 as a template, 3D models of the CYP2E1s of other mammals were constructed using the SWISS-MODEL program. Finally, the generated homology models were applied to calculate their docking capacities against styrene and polystyrene using the Surflex-Dock program, which could automatically dock ligands into a receptor's ligand binding site using a protomol based approach and assess the affinity by an empirically derived scoring function. Docking experiments showed that the studied mammalian CYP2E1s had high binding affinities with styrene. For polystyrene, the dimmer of styrene has high binding affinities with CYP2E1s, however, trimer and other high polymers were found hard to be docked into the CYP2E1s. The results of this study indicated that bioinformatics approaches might be useful tools to predict styrene and polystyrene affinities with mammalian CYP2E1s.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Wu B, Ford T, Gu JD, Zhang XX, Li AM, Cheng SP. Computational studies of interactions between endocrine disrupting chemicals and androgen receptor of different vertebrate species. CHEMOSPHERE 2010; 80:535-541. [PMID: 20546840 DOI: 10.1016/j.chemosphere.2010.04.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/13/2010] [Accepted: 04/18/2010] [Indexed: 05/29/2023]
Abstract
Homology modeling and molecular docking were used to in silico analyze the interactions between six endocrine disrupting chemicals (EDCs) and 11 androgen receptors (ARs) of different vertebrate species. The MODELLER 9V7 program was employed to construct the homology models of AR ligand binding domains (LBDs) from birds, amphibians, bony fishes and cartilaginous fishes. The Surflex-Dock program was applied to calculate and analyze the binding affinities between the six EDCs and AR LBDs. The docking experiment showed that AR LBDs had high affinities with nonyl phenol (NP) and butyl benzyl phthalate (BBP), but low affinities with the 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE153). The results of cluster analysis suggested that predicted binding affinities were species-specific, which was consistent with the phylogenetic analysis of AR LBDs. The difference of binding affinities could be mainly due to the different hydrogen bonds and the orientation of ligands in the binding pockets. Our results suggest that integrated methods of phylogenetic analysis, homology modeling and molecular docking might be a potential tool to predict the different interactions between contaminants and associated receptors in different trophic levels.
Collapse
|
11
|
Jaroszewski L, Slabinski L, Wooley J, Deacon AM, Lesley SA, Wilson IA, Godzik A. Genome pool strategy for structural coverage of protein families. Structure 2008; 16:1659-67. [PMID: 19000818 PMCID: PMC2902364 DOI: 10.1016/j.str.2008.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 11/24/2022]
Abstract
Even closely homologous proteins often have different crystallization properties and propensities. This observation can be used to introduce an additional dimension into crystallization trials by simultaneous targeting multiple homologs in what we call a "genome pool" strategy. We show that this strategy works because protein physicochemical properties correlated with crystallization success have a surprisingly broad distribution within most protein families. There are also "easy" and "difficult" families where this distribution is tilted in one direction. This leads to uneven structural coverage of protein families, with more "easy" ones solved. Increasing the size of the "genome pool" can improve chances of solving the "difficult" ones. In contrast, our analysis does not indicate that any specific genomes are "easy" or "difficult". Finally, we show that the group of proteins with known 3D structures is systematically different from the general pool of known proteins and we assess the structural consequences of these differences.
Collapse
Affiliation(s)
- Lukasz Jaroszewski
- Joint Center for Structural Genomics, Bioinformatics Core, Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|