1
|
Mikami R, Tsukagoshi S, Arai K. Abnormal Enhancement of Protein Disulfide Isomerase-like Activity of a Cyclic Diselenide Conjugated with a Basic Amino Acid by Inserting a Glycine Spacer. BIOLOGY 2021; 10:biology10111090. [PMID: 34827083 PMCID: PMC8615077 DOI: 10.3390/biology10111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
In a previous study, we reported that (S)-1,2-diselenane-4-amine (1) catalyzes oxidative protein folding through protein disulfide isomerase (PDI)-like catalytic mechanisms and that the direct conjugation of a basic amino acid (Xaa: His, Lys, or Arg) via an amide bond improves the catalytic activity of 1 by increasing its diselenide (Se–Se) reduction potential (E′°). In this study, to modulate the Se–Se redox properties and the association of the compounds with a protein substrate, new catalysts, in which a Gly spacer was inserted between 1 and Xaa, were synthesized. Exhaustive comparison of the PDI-like catalytic activities and E′° values among 1, 1-Xaa, and 1-Gly-Xaa showed that the insertion of a Gly spacer into 1-Xaa either did not change or slightly reduced the PDI-like activity and the E′° values. Importantly, however, only 1-Gly-Arg deviated from this generality and showed obviously increased E°′ value and PDI-like activity compared to the corresponding compound with no Gly spacer (1-Arg); on the contrary, its catalytic activity was the highest among the diselenide compounds employed in this study, while this abnormal enhancement of the catalytic activity of 1-Gly-Arg could not be fully explained by the thermodynamics of the Se–Se bond and its association ability with protein substrates.
Collapse
|
2
|
Conjugate of Thiol and Guanidyl Units with Oligoethylene Glycol Linkage for Manipulation of Oxidative Protein Folding. Molecules 2021; 26:molecules26040879. [PMID: 33562280 PMCID: PMC7915835 DOI: 10.3390/molecules26040879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Oxidative protein folding is a biological process to obtain a native conformation of a protein through disulfide-bond formation between cysteine residues. In a cell, disulfide-catalysts such as protein disulfide isomerase promote the oxidative protein folding. Inspired by the active sites of the disulfide-catalysts, synthetic redox-active thiol compounds have been developed, which have shown significant promotion of the folding processes. In our previous study, coupling effects of a thiol group and guanidyl unit on the folding promotion were reported. Herein, we investigated the influences of a spacer between the thiol group and guanidyl unit. A conjugate between thiol and guanidyl units with a diethylene glycol spacer (GdnDEG-SH) showed lower folding promotion effect compared to the thiol-guanidyl conjugate without the spacer (GdnSH). Lower acidity and a more reductive property of the thiol group of GdnDEG-SH compared to those of GdnSH likely resulted in the reduced efficiency of the folding promotion. Thus, the spacer between the thiol and guanidyl groups is critical for the promotion of oxidative protein folding.
Collapse
|
3
|
Kameta N, Ding W. Stacking of nanorings to generate nanotubes for acceleration of protein refolding. NANOSCALE 2021; 13:1629-1638. [PMID: 33331384 DOI: 10.1039/d0nr07660k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly and photoisomerization of azobenzene-based amphiphilic molecules produced nanorings with an inner diameter of 25 nm and lengths of <40 nm. The nanorings, which consisted of a single bilayer membrane of the amphiphiles, retained their morphology in the presence of a stacking inhibitor; whereas in the absence of the inhibitor, the nanorings stacked into short nanotubes (<500 nm). When subjected to mild heat treatment, these nanotubes joined end-to-end to form nanotubes with lengths of several tens of micrometers. The nanorings and the short and long nanotubes were able to encapsulate proteins and thereby suppress aggregation induced by thermal denaturation. In addition, the nanotubes accelerated refolding of denatured proteins by encapsulating them and then releasing them into the bulk solution; refolding occurred simultaneously with release. In contrast, the nanorings did not accelerate protein refolding. Refolding efficiency increased with increasing nanotube length, indicating that the re-aggregation of the proteins was strictly inhibited by lowering the concentration of the proteins in the bulk solution as the result of the slow release from the longer nanotubes. The migration of the proteins through the long, narrow nanochannels during the release process will also contribute to refolding.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
4
|
Arai K, Iwaoka M. Flexible Folding: Disulfide-Containing Peptides and Proteins Choose the Pathway Depending on the Environments. Molecules 2021; 26:E195. [PMID: 33401729 PMCID: PMC7794709 DOI: 10.3390/molecules26010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways. The significantly different pathways characterized for hen-egg white lysozyme and bovine milk α-lactalbumin, which belong to the same protein superfamily, suggest that the information of protein folding pathways, not only the native folded structure, is encoded in the amino acid sequence. The application of the flexible pathways of peptides and proteins to the engineering of folded three-dimensional structures is an interesting and important issue in the new realm of the current oxidative protein folding study.
Collapse
Affiliation(s)
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan;
| |
Collapse
|
5
|
Artificial chaperones: From materials designs to applications. Biomaterials 2020; 254:120150. [DOI: 10.1016/j.biomaterials.2020.120150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
6
|
Tsukagoshi S, Mikami R, Arai K. Basic Amino Acid Conjugates of 1,2-Diselenan-4-amine with Protein Disulfide Isomerase-like Functions as a Manipulator of Protein Quality Control. Chem Asian J 2020; 15:2646-2652. [PMID: 32662226 DOI: 10.1002/asia.202000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/09/2022]
Abstract
Protein disulfide isomerase (PDI) can assist immature proteins to correctly fold by controlling cysteinyl disulfide (SS)-relating reactions (i. e., SS-formation, SS-cleavage, and SS-isomerization). PDI controls protein quality by suppressing protein aggregation, as well as functions as an oxidative folding catalyst. Following the amino acid sequence of the active center in PDI, basic amino acid conjugates of 1,2-diselenan-4-amine (1), which show oxidoreductase- and isomerase-like activities for SS-relating reactions, were designed as a novel PDI model compound. By conjugating the amino acids, the diselenide reduction potential of compound 1 was significantly increased, causing improvement of the catalytic activities for all SS-relating reactions. Furthermore, these compounds, especially histidine-conjugated one, remarkably suppressed protein aggregation even at low concertation (0.3 mM∼). Thus, it was demonstrated that the conjugation of basic amino acids into 1 simultaneously achieves the enhancement of the redox reactivity and the capability to suppress protein aggregation.
Collapse
Affiliation(s)
- Shunsuke Tsukagoshi
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Rumi Mikami
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenta Arai
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
7
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
8
|
Kameta N, Matsuzawa T, Yaoi K, Fukuda J, Masuda M. Glycolipid-based nanostructures with thermal-phase transition behavior functioning as solubilizers and refolding accelerators for protein aggregates. SOFT MATTER 2017; 13:3084-3090. [PMID: 28361133 DOI: 10.1039/c7sm00310b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly of synthetic glycolipids produced nanostructures such as vesicles and nanotubes consisting of bilayer membranes, which underwent a gel-to-liquid crystalline thermal phase transition. Vesicles formed at temperatures above the thermal phase transition temperatures (Tg-l) could solubilize aggregates of denatured proteins by trapping them in the fluid bilayer membranes. Cooling to temperatures below Tg-l caused a morphological transformation into nanotubes that accompanied the thermal phase transition from the fluid to the solid state. This phenomenon allowed the trapped proteins to be quickly released into the bulk solution and simultaneously facilitated the refolding of the proteins. The refolding efficiency strongly depended on the electrostatic attraction between the bilayer membranes of the nanostructures and the proteins. Because of the long shape (>400 nm) of the nanotubes, simple membrane filtration through a pore size of 200 nm led to complete separation and recovery of the refolded proteins (3-9 nm sizes).
Collapse
Affiliation(s)
- N Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | | | |
Collapse
|
9
|
Synthesis of newly cationic surfactant based on dimethylaminopropyl amine and their silver nanoparticles: Characterization; surface activity and biological activity. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Kameta N, Akiyama H, Masuda M, Shimizu T. Effect of Photoinduced Size Changes on Protein Refolding and Transport Abilities of Soft Nanotubes. Chemistry 2016; 22:7198-205. [PMID: 27121150 DOI: 10.1002/chem.201504613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 02/04/2023]
Abstract
Self-assembly of azobenzene-modified amphiphiles (Glyn Azo, n=1-3) in water at room temperature in the presence of a protein produced nanotubes with the protein encapsulated in the channels. The Gly2 Azo nanotubes (7 nm internal diameter [i.d.]) promoted refolding of some encapsulated proteins, whereas the Gly3 Azo nanotubes (13 nm i.d.) promoted protein aggregation. Although the 20 nm i.d. channels of the Gly1 Azo nanotubes were too large to influence the encapsulated proteins, narrowing of the i.d. to 1 nm by trans-to-cis photoisomerization of the azobenzene units of the Gly1 Azo monomers packed in the solid bilayer membranes led to a squeezing out of the proteins into the bulk solution and simultaneously enhanced their refolding ratios. In contrast, photoinduced transformation of the Gly2 Azo nanotubes to short nanorings (<40 nm) with a large i.d. (28 nm) provided no further refolding assistance. We thus demonstrate that pertubation by the solid bilayer membrane wall of the nanotubes is important to accelerate refolding of the denatured proteins during their transport in the narrow nanotube channels.
Collapse
Affiliation(s)
- Naohiro Kameta
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Haruhisa Akiyama
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
11
|
Yoshimoto M, Kozono R, Tsubomura N. Liposomes as chaperone mimics with controllable affinity toward heat-denatured formate dehydrogenase from Candida boidinii. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:762-770. [PMID: 25513889 DOI: 10.1021/la504126b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chaperone machinery in living systems can catch denatured enzymes and induce their reactivation. Chaperone mimics are beneficial for applying enzymatic reactions in vitro. In this work, the affinity between liposomes and thermally denatured enzymes was controlled to stabilize the enzyme activity. The model enzyme is formate dehydrogenase from Candida boidinii (CbFDH) which is a homodimer and negatively charged in the phosphate buffer solution (pH 7.2) used. The activity of free CbFDH readily decreased at 58 °C following the first-order kinetics with the half-life t1/2 of 27 min. The turbidity measurements showed that the denatured enzyme molecules formed aggregates. The liposomes composed of zwitterionic phosphatidylcholines (PCs) stabilized the CbFDH activity at 58 °C, as revealed with six different PCs. The PC liposomes were indicated to bind to the aggregate-prone enzyme molecules, allowing reactivation at 25 °C. The cofactor β-reduced nicotinamide adenine dinucleotide (NADH) also stabilized the enzyme activity. The affinity between liposomes and denatured CbFDH could be modulated by incorporating cationic 1,2-dioleoyloxy-3-trimethylammonium propane chloride (DOTAP) in PC membranes. The t1/2 values significantly increased in the presence of liposomes ([lipid] = 1.5 mM) composed of PC and DOTAP at the mole fraction f(D) of 0.1. On the other hand, the DOTAP-rich liposomes (f(D) ≥ 0.7) showed strong affinity toward denatured CbFDH, accelerating its deactivation. The liposomes with low charge density function as chaperone mimics that can efficiently catch the denatured enzymes without interfering with their intramolecular interaction for reactivation.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University , 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | | | | |
Collapse
|
12
|
Li H, Yu C, Chen R, Li J, Li J. Novel ionic liquid-type Gemini surfactants: Synthesis, surface property and antimicrobial activity. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.12.014] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kateb M, Givenchy ETD, Baklouti A, Guittard F. Synthesis and surface properties of semi-fluorinated gemini surfactants with two reactive bromo pendant groups. J Colloid Interface Sci 2011; 357:129-34. [DOI: 10.1016/j.jcis.2011.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/28/2022]
|
14
|
Tao Q, Li A, Liu X, Ma R, An Y, Shi L. Protecting enzymes against heat inactivation by temperature-sensitive polymer in confined space. Phys Chem Chem Phys 2011; 13:16265-71. [DOI: 10.1039/c1cp21438a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|