1
|
Zhang Y, Ding HT, Jiang WX, Zhang X, Cao HY, Wang JP, Li CY, Huang F, Zhang XY, Chen XL, Zhang YZ, Li PY. Active site architecture of an acetyl xylan esterase indicates a novel cold adaptation strategy. J Biol Chem 2021; 297:100841. [PMID: 34058201 PMCID: PMC8253974 DOI: 10.1016/j.jbc.2021.100841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hai-Tao Ding
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc, Qingdao, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Ping Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Kashif A, Tran LH, Jang SH, Lee C. Roles of Active-Site Aromatic Residues in Cold Adaptation of Sphingomonas glacialis Esterase EstSP1. ACS OMEGA 2017; 2:8760-8769. [PMID: 31457406 PMCID: PMC6645578 DOI: 10.1021/acsomega.7b01435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/23/2017] [Indexed: 06/10/2023]
Abstract
The aromatic amino acids, Tyr or Trp, which line the active-site walls of esterases, stabilize the catalytic His loop via hydrogen bonding. A Tyr residue is preferred in extremophilic esterases (psychrophilic or hyperthermophilic esterases), whereas a Trp residue is preferred in moderate-temperature esterases. Here, we provide evidence that Tyr and Trp play distinct roles in cold adaptation of the psychrophilic esterase EstSP1 isolated from an Arctic bacterium Sphingomonas glacialis PAMC 26605. Stern-Volmer plots showed that the mutation of Tyr191 to Ala, Phe, Trp, and His resulted in reduced conformational flexibility of the overall protein structure. Interestingly, the Y191W and Y191H mutants showed increased thermal stability at moderate temperatures. All Tyr191 mutants showed reduced catalytic activity relative to wild-type EstSP1. Our results indicate that Tyr with its phenyl hydroxyl group is favored for increased conformational flexibility and high catalytic activity of EstSP1 at low temperatures at the expense of thermal stability. The results of this study suggest that, in the permanently cold Arctic zone, enzyme activity has been selected for psychrophilic enzymes over thermal stability. The results presented herein provide novel insight into the roles of Tyr and Trp residues for temperature adaptation of enzymes that function at low, moderate, and high temperatures.
Collapse
Affiliation(s)
| | | | | | - ChangWoo Lee
- E-mail: . Tel: +82-53-850-6464. Fax: +82-53-850-6469
| |
Collapse
|
3
|
|
4
|
Ntougias S, Polkowska Ż, Nikolaki S, Dionyssopoulou E, Stathopoulou P, Doudoumis V, Ruman M, Kozak K, Namieśnik J, Tsiamis G. Bacterial Community Structures in Freshwater Polar Environments of Svalbard. Microbes Environ 2016; 31:401-409. [PMID: 27725345 PMCID: PMC5158112 DOI: 10.1264/jsme2.me16074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two thirds of Svalbard archipelago islands in the High Arctic are permanently covered with glacial ice and snow. Polar bacterial communities in the southern part of Svalbard were characterized using an amplicon sequencing approach. A total of 52,928 pyrosequencing reads were analyzed in order to reveal bacterial community structures in stream and lake surface water samples from the Fuglebekken and Revvatnet basins of southern Svalbard. Depending on the samples examined, bacterial communities at a higher taxonomic level mainly consisted either of Bacteroidetes, Betaproteobacteria, and Microgenomates (OP11) or Planctomycetes, Betaproteobacteria, and Bacteroidetes members, whereas a population of Microgenomates was prominent in 2 samples. At the lower taxonomic level, bacterial communities mostly comprised Microgenomates, Comamonadaceae, Flavobacteriaceae, Legionellales, SM2F11, Parcubacteria (OD1), and TM7 members at different proportions in each sample. The abundance of OTUs shared in common among samples was greater than 70%, with the exception of samples in which the proliferation of Planctomycetaceae, Phycisphaeraceae, and Candidatus Methylacidiphilum spp. lowered their relative abundance. A multi-variable analysis indicated that As, Pb, and Sb were the main environmental factors influencing bacterial profiles. We concluded that the bacterial communities in the polar aquatic ecosystems examined mainly consisted of freshwater and marine microorganisms involved in detritus mineralization, with a high proportion of zooplankton-associated taxa also being identified.
Collapse
Affiliation(s)
- Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
6
|
Dachuri V, Boyineni J, Choi S, Chung HS, Jang SH, Lee C. Organic solvent-tolerant, cold-adapted lipases PML and LipS exhibit increased conformational flexibility in polar organic solvents. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Truongvan N, Jang SH, Lee C. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK. Biochemistry 2016; 55:3542-9. [DOI: 10.1021/acs.biochem.6b00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ngoc Truongvan
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - Sei-Heon Jang
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| | - ChangWoo Lee
- Department of Biomedical
Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan 38453, South Korea
| |
Collapse
|
8
|
Boyineni J, Kim J, Kang BS, Lee C, Jang SH. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1076-82. [DOI: 10.1016/j.bbapap.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
|
9
|
Cold Adaptation: Structural and Functional Characterizations of Psychrophilic and Mesophilic Acetate Kinase. Protein J 2014; 33:313-22. [DOI: 10.1007/s10930-014-9562-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Spectroscopic analyses of manganese ions effects on the conformational changes of inorganic pyrophosphatase from psychrophilic Shewanella sp. AS-11. Protein J 2013; 33:11-7. [PMID: 24363149 DOI: 10.1007/s10930-013-9531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mn²⁺ ions influence the activity, temperature dependence, and thermostability of the psychrophilic Shewanella-PPase (Sh-PPase), and are required to function in cold environments. The functional characteristics of Sh-PPase on activation with Mn²⁺ ions are possibly related to conformational changes in the molecule. In this study, conformational changes of Sh-PPase on activation with Mn²⁺ ions were analyzed in solution by fluorescence spectroscopy analysis of intrinsic tryptophan residues, 1-anilino-8-naphthalene sulfonate fluorescence, and circular dichroism spectroscopy. For Sh-PPase, Mn²⁺ ions did not affect the flexibility of the tryptophan residues and secondary structure of the enzyme. However, the microenvironment of the tryptophan residues and surface area of Sh-PPase were more hydrophilic on activation with Mn²⁺ ions. These results indicate that activation with Mn²⁺ ions causes conformational changes around the aromatic amino acid residues and affects the hydrophobicity of the enzyme surface, which results in conformational changes. Substrate-induced conformational changes reflect that metal-free Sh-PPase in solution indicated an open structure and will be a close structure when binding substrate. In combination of our spectroscopic analyses on Sh-PPase, it can be concluded that activation with Mn²⁺ ions changes some conformation of Sh-PPase molecule in solution.
Collapse
|
11
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
12
|
Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 2012; 13:11643-11665. [PMID: 23109875 PMCID: PMC3472767 DOI: 10.3390/ijms130911643] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 01/20/2023] Open
Abstract
Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. Considering the subtle structural adjustments required for low temperature activity, directed evolution appears to be the most suitable methodology to engineer cold activity in biological catalysts.
Collapse
|