1
|
Karmakar S, Das KP. Histidine Tags in Human Recombinant Alpha B-Crystallin (HSPB5) Proteins Are Detrimental for Zinc Binding Studies. Biopolymers 2025; 116:e70003. [PMID: 39878199 DOI: 10.1002/bip.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn2. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability. Three histidines H104, H111, and H119 of recombinant human αB-crystallin (HSPB5) are found to be the Zn2+ binding residues. In this article, we did site-directed mutagenesis of six histidine residues and made five-point mutants and a double mutant of αB-crystallin. We studied the effect of zinc on the chaperone function, surface hydrophobicity, and stability of the histidine mutants. We removed the histidine tag from H18A and H101V mutants and studied the stability and chaperone function in the presence and absence of zinc. H83 and H111 mutations showed similar enhancement in chaperone function like WT in the presence of Zn2+. Point mutants having his tags showed similar stability enhancement, but point mutant H18A without his tag showed less enhancement in stability in the presence of zinc. This indicates the significance of the presence of his tags in the study of zinc binding interaction with recombinant human αB-crystallin.
Collapse
Affiliation(s)
- Srabani Karmakar
- Department of Microbiology, Kingston College of Science, Kolkata, India
| | - K P Das
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Szebesczyk A, Słowik J. Heat shock proteins and metal ions - Reaction or interaction? Comput Struct Biotechnol J 2023; 21:3103-3108. [PMID: 37273852 PMCID: PMC10236365 DOI: 10.1016/j.csbj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Heat shock proteins (HSPs) are part of the cell's molecular chaperone system responsible for the proper folding (or refolding) of proteins. They are expressed in cells of a wide variety of organisms, from bacteria and fungi to humans. While some HSPs require metal ions for proper functioning, others are expressed as a response of the organism to either essential or toxic metal ions. Their presence can influence the occurrence of cellular processes, even those as significant as programmed cell death. The development of research methods and structural modeling has enabled increasingly accurate recognition of new HSP functions, including their role in maintaining metal ion homeostasis. Current investigations on the expression of HSPs in response to heavy metal ions include not only the direct effect of these ions on the cell but also analysis of reactive oxygen species (ROS) and the increased production of HSPs with increasing ROS concentration. This minireview contains information about the direct and indirect interactions of heat shock proteins with metal ions, both those of biological importance and heavy metals.
Collapse
|
3
|
Rodzik A, Król-Górniak A, Railean V, Sugajski M, Gołębiowski A, Horne DS, Michalke B, Sprynskyy M, Pomastowski P, Buszewski B. Study on zinc ions binding to the individual casein fractions: α-, β- and κ-casein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Guo H, Yu Y, Hong Z, Zhang Y, Xie Q, Chen H. Effect of Collagen Peptide-Chelated Zinc Nanoparticles From Pufferfish Skin on Zinc Bioavailability in Rats. J Med Food 2021; 24:987-996. [PMID: 34448624 DOI: 10.1089/jmf.2021.k.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small-molecular-weight collagen peptides (CPs) with high zinc-chelating ability were extracted from pufferfish skin. Chelation of CPs with zinc was performed to prepare novel CP-chelated zinc (CP-Zn) nanoparticles. CP-Zn nanoparticles were spherical, regular, and well dispersed with an average size of ∼100 nm. The zeta potential assay was used to explore the stability of CP-Zn nanoparticles. CP-Zn nanoparticles were much more stable in the pH range of 3-8. The structural properties of CP-Zn nanoparticles were characterized by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. The results indicated that CPs were chelated with Zn ions through the amino nitrogen and oxygen atoms from the carboxyl groups. Furthermore, the animal experiment results showed that CP-Zn nanoparticles were more effective in improving zinc bioavailability of Zn-deficient rats than zinc gluconate and zinc sulfate. The study demonstrated that CP-Zn nanoparticles were ideal for zinc supplementation.
Collapse
Affiliation(s)
- Honghui Guo
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen City, China
| | - Yun Yu
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, China
| | - Zhuan Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen City, China
| | - Yiping Zhang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen City, China
| | - Quanling Xie
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen City, China
| | - Hui Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen City, China
| |
Collapse
|
6
|
Boelens WC. Structural aspects of the human small heat shock proteins related to their functional activities. Cell Stress Chaperones 2020; 25:581-591. [PMID: 32253739 PMCID: PMC7332592 DOI: 10.1007/s12192-020-01093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
Small heat shock proteins function as chaperones by binding unfolding substrate proteins in an ATP-independent manner to keep them in a folding-competent state and to prevent irreversible aggregation. They play crucial roles in diseases that are characterized by protein aggregation, such as neurodegenerative and neuromuscular diseases, but are also involved in cataract, cancer, and congenital disorders. For this reason, these proteins are interesting therapeutic targets for finding molecules that could affect the chaperone activity or compensate specific mutations. This review will give an overview of the available knowledge on the structural complexity of human small heat shock proteins, which may aid in the search for such therapeutic molecules.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry 284, Institute for Molecules and Materials (IMM), Radboud University, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
8
|
Friedemann M, Tõugu V, Palumaa P. Copper(II) partially protects three histidine residues and the N-terminus of amyloid-β peptide from diethyl pyrocarbonate (DEPC) modification. FEBS Open Bio 2020; 10:1072-1081. [PMID: 32255544 PMCID: PMC7262909 DOI: 10.1002/2211-5463.12857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 11/07/2022] Open
Abstract
Diethyl pyrocarbonate (DEPC) has been primarily used as a residue‐specific modifying agent to study the role of His residues in peptide/protein and enzyme function; however, its action is not specific, and several other residues can also be modified. In the current study, we monitored the reaction of DEPC with amyloid‐beta (Aβ) peptides and insulin by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and determined the modification sites by electrospray ionization quadrupole time‐of‐flight tandem MS (ESI Q‐TOF MS/MS). Our results indicate that five residues in Aβ1–42 are modified in the presence of 30‐fold molar excess of DEPC. After hydroxylamine treatment (which removes modifications from three His residues), two labels remain bound at the peptide N terminus and Lys16. DEPC treatment of Aβ1–42 promotes peptide aggregation, as monitored through the loss of soluble Aβ42 in a semi‐quantitative MALDI‐TOF MS assay. It has been previously proposed that Cu(II) ions protect Aβ1–16 from DEPC modification through binding to His6. We confirmed that Cu(II) ions decrease the stoichiometry of Aβ1–16 modification with the excess of DEPC being lower as compared to the control, which indicates that Cu(II) protects Aβ from DEPC modification. Sequencing of obtained Cu(II)‐protected Aβ1–16 samples showed that Cu(II) does not protect any residues completely, but partially protects all three His residues and the N terminus. Thus, the protection by Cu(II) ions is not related to specific metal binding to a particular residue (e.g. His6), but rather all His residues and the N terminus are involved in binding of Cu(II) ions. These results allow us to elucidate the effect of DEPC modification on amyloidogenity of human Aβ and to speculate about the role of His residues in these processes.
Collapse
Affiliation(s)
- Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Vello Tõugu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| |
Collapse
|
9
|
Domínguez-Calva JA, Haase-Pettingell C, Serebryany E, King JA, Quintanar L. A Histidine Switch for Zn-Induced Aggregation of γ-Crystallins Reveals a Metal-Bridging Mechanism That Is Relevant to Cataract Disease. Biochemistry 2018; 57:4959-4962. [PMID: 30064223 DOI: 10.1021/acs.biochem.8b00436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cataract disease results from non-amyloid aggregation of eye lens proteins and is the leading cause of blindness in the world. Zinc concentrations in cataractous lenses are increased significantly relative to those in healthy lenses. It was recently reported that Zn(II) ions induce the aggregation of one of the more abundant proteins in the core of the lens, human γD-crystallin. Here, the mechanism of Zn-induced aggregation has been revealed through a comparative study of three homologous human lens γ-crystallins and a combination of spectroscopic, electron microscopy, and site-directed mutagenesis studies. This work reveals that a single His residue acts as a "switch" for the Zn-induced non-amyloid aggregation of human γ-crystallins. Aggregation can be reversed by a chelating agent, revealing a metal-bridging mechanism. This study sheds light on an aberrant Zn-crystallin interaction that promotes aggregation, a process that is relevant to cataract disease.
Collapse
Affiliation(s)
- José Antonio Domínguez-Calva
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , 07360 Mexico City , Mexico
| | - Cameron Haase-Pettingell
- Department of Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
| | - Eugene Serebryany
- Department of Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
| | - Jonathan Alan King
- Department of Biology , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
| | - Liliana Quintanar
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , 07360 Mexico City , Mexico
| |
Collapse
|
10
|
Santhoshkumar P, Karmakar S, Sharma KK. Structural and functional consequences of chaperone site deletion in αA-crystallin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1529-38. [PMID: 27524665 DOI: 10.1016/j.bbapap.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/29/2023]
Abstract
The chaperone-like activity of αA-crystallin has an important role in maintaining lens transparency. Previously we identified residues 70-88 as a chaperone site in αA-crystallin. In this study, we deleted the chaperone site residues to generate αAΔ70-76 and αAΔ70-88 mutants and investigated if there are additional substrate-binding sites in αA-crystallin. Both mutant proteins when expressed in E. coli formed inclusion bodies, and on solubilizing and refolding, they exhibited similar structural properties, with a 2- to 3-fold increase in molar mass compared to the molar mass of wild-type protein. The deletion mutants were less stable than the wild-type αA-crystallin. Functionally αAΔ70-88 was completely inactive as a chaperone, while αAΔ70-76 demonstrated a 40-50% reduction in anti-aggregation activity against alcohol dehydrogenase (ADH). Deletion of residues 70-88 abolished the ADH binding sites in αA-crystallin at physiological temperature. At 45°C, cryptic ADH binding site(s) became exposed, which contributed subtly to the chaperone-like activity of αAΔ70-88. Both of the deletion mutants were completely inactive in suppressing aggregation of βL-crystallin at 53°C. The mutants completely lost the anti-apoptotic property that αA-crystallin exhibits while they protected ARPE-19 (a human retinal pigment epithelial cell line) and primary human primary lens epithelial (HLE) cells from oxidative stress. Our studies demonstrate that residues 70-88 in αA-crystallin act as a primary substrate binding site and account for the bulk of the total chaperone activity. The β3 and β4 strands in αA-crystallin comprising 70-88 residues play an important role in maintenance of the structure and in preventing aggregation of denaturing proteins.
Collapse
Affiliation(s)
- Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States.
| | - Srabani Karmakar
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Krishna K Sharma
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States; Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, United States.
| |
Collapse
|
11
|
Biswas A, Karmakar S, Chowdhury A, Das KP. Interaction of α-crystallin with some small molecules and its effect on its structure and function. Biochim Biophys Acta Gen Subj 2015; 1860:211-21. [PMID: 26073614 DOI: 10.1016/j.bbagen.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/23/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND α-Crystallin acts like a molecular chaperone by interacting with its substrate proteins and thus prevents their aggregation. It also interacts with various kinds of small molecules that affect its structure and function. SCOPE OF REVIEW In this article we will present a review of work done with respect to the interaction of ATP, peptide generated from lens crystallin and other proteins and some bivalent metal ions with α-crystallin and discuss the role of these interactions on its structure and function and cataract formation. We will also discuss the interaction of some hydrophobic fluorescence probes and surface active agents with α-crystallin. MAJOR CONCLUSIONS Small molecule interaction controls the structure and function of α-crystallin. ATP and Zn+2 stabilize its structure and enhance chaperone function. Therefore the depletion of these small molecules can be detrimental to maintenance of lens transparency. However, the accumulation of small peptides due to protease activity in the lens can also be harmful as the interaction of these peptides with α-crystallin and other crystallin proteins in the lens promotes aggregation and loss of lens transparency. The use of hydrophobic probe has led to a wealth of information regarding the location of substrate binding site and nature of chaperone-substrate interaction. Interaction of surface active agents with α-crystallin has helped us to understand the structural stability and oligomeric dissociation in α-crystallin. GENERAL SIGNIFICANCE These interactions are very helpful in understanding the mechanistic details of the structural changes and chaperone function of α-crystallin. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- A Biswas
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - S Karmakar
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - A Chowdhury
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| | - K P Das
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata 700 009, India.
| |
Collapse
|
12
|
Zhan D, Bai A, Yu L, Han W, Feng Y. Characterization of the PH1704 protease from Pyrococcus horikoshii OT3 and the critical functions of Tyr120. PLoS One 2014; 9:e103902. [PMID: 25192005 PMCID: PMC4156298 DOI: 10.1371/journal.pone.0103902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/03/2014] [Indexed: 12/02/2022] Open
Abstract
The PH1704 protease from hyperthermophilic archaean Pyrococcus horikoshii OT3 is a member of DJ-1/ThiJ/PfpI superfamily with diverse functional subclasses. The recombinant PH1704 was efficiently purified and was systematically characterized by a combination of substrate specificity analysis, steady-state kinetics study and molecular docking research. The homogeneous protease was obtained as a presumed dodecamer with molecular weight of ∼240 kDa. Iodoacetamide strongly inhibited the peptidase activity, confirming that Cys100 is a nucleophilic residue. The recombinant protein was identified as both an aminopeptidase and an endopeptidase. Experimental data showed that L-R-amc was the best substrate of PH1704. Structural interaction fingerprint analysis (SIFt) indicated the binding pose of PH1704 and showed that Tyr120 is important in substrate binding. Kinetic parameters Kcat and Kcat/Km of the Y120P mutant with L-R-amc was about 7 and 7.8 times higher than that of the wild type (WT). For the endopeptidase Y120P with AAFR-amc, Kcat and Kcat/Km is 10- and 21- fold higher than that of WT. Experimental data indicate the important functions of Tyr120: involvement in enzyme activity to form a hydrogen bond with Cys100 and as an entrance gate of the substrate with Lys43. The results of this study can be used to investigate the DJ-1/ThiJ/PfpI superfamily.
Collapse
Affiliation(s)
- Dongling Zhan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Aixi Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Lei Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
- * E-mail: (YF); (WH)
| | - Yan Feng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
- State Key Laboratory of Microbial Metabolism, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (YF); (WH)
| |
Collapse
|
13
|
Lu SY, Kumar Reddy DN, Huang FY. The Chaperone-like Activity and Structure of Mutant H119G of Rat Lens αB-crystallin: A Study of Divalent Metal Ion Binding Site. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|