1
|
Babbal, Mohanty S, Khasa YP. Determination of enzyme kinetic parameters of fast-acting Schizosaccharomyces pombe Ulp1 catalytic domain using Forster resonance energy transfer (FRET) assay. Int J Biol Macromol 2025; 301:140312. [PMID: 39880258 DOI: 10.1016/j.ijbiomac.2025.140312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag. This study details the quantification of kinetic parameters of commercially relevant S. pombe Ulp1 catalytic domain by employing a Forster resonance energy transfer (FRET) based assay. The energy transfer between the fluorophores allowed to elucidate the kinetic parameters precisely. For the FRET assay, the ECFP-SpSUMO-EYFP construct was successfully cloned in the pET28a vector. The fusion protein was efficaciously expressed and purified near homogeneity. The assay employed provided a real-time investigation of SpUlp1 catalysis. The enzyme turnover number (kcat) was computed as 9.08 s-1. The Michaelis-Menten constant, KM was determined as 0.65 × 101 μM with a maximum velocity (Vmax) of 0.045 μM/s. The substrate specificity ratio, kcat/KM was calculated to be 1.39 × 106 M-1 s-1. Using the FRET assay approach, the fast-acting nature of the SpUlp1 was analyzed in real-time at even 103 times higher molar substrate concentration. Thus, the kinetics of commercially relevant SpUlp1 was successfully demonstrated along with its large-scale production at 50 L bioreactor, where the maximum product concentration was 4.8 g/L. Additionally, the S. pombe SUMO used in the current study could potentially replace the S. cerevisiae SUMO as a solubility enhancer fusion tag.
Collapse
Affiliation(s)
- Babbal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
2
|
Ahmed A, Fujimura NA, Tahir S, Akram M, Abbas Z, Riaz M, Raza A, Abbas R, Ahmed N. Soluble and insoluble expression of recombinant human interleukin-2 protein using pET expression vector in Escherichia coli. Prep Biochem Biotechnol 2025; 55:45-57. [PMID: 38824503 DOI: 10.1080/10826068.2024.2361146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Interleukin-2 has emerged as a potent protein-based drug to treat various cancers, AIDS, and autoimmune diseases. Despite its immense requirement, the production procedures are inefficient to meet the demand. Therefore, efficient production procedures must be adopted to improve protein yield and decrease procedural loss. This study analyzed cytoplasmic and periplasmic IL-2 expression for increased protein yield and significant biological activity. The study is focused on cloning IL-2 into a pET-SUMO and pET-28a vector that expresses IL-2 in soluble form and inclusion bodies, respectively. Both constructs were expressed into different E. coli expression strains, but the periplasmic and cytoplasmic expression of IL-2 was highest in overnight culture in Rosetta 2 (DE3). Therefore, E. coli Rosetta 2 (DE3) was selected for large-scale production and purification. Purified IL-2 was characterized by SDS-PAGE and western blotting, while its biological activity was determined using MTT bioassay. The results depict that the periplasmic and cytoplasmic IL-2 achieved adequate purification, yielding 0.86 and 0.51 mg/mL, respectively, with significant cytotoxic activity of periplasmic and cytoplasmic IL-2. Periplasmic IL-2 has shown better yield and significant biological activity in vitro which describes its attainment of native protein structure and function.
Collapse
Affiliation(s)
- Atif Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nao Akusa Fujimura
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Saad Tahir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Akram
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zaheer Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maira Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Raza
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rabia Abbas
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Brown BL. Heterologous Expression and Purification of Eukaryotic ALA Synthase from E. coli. Methods Mol Biol 2024; 2839:233-241. [PMID: 39008257 DOI: 10.1007/978-1-0716-4043-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This chapter presents a method for the heterologous expression and purification of human ALA synthase from Escherichia coli. Mature ALAS is produced with an N-terminal hexahistidine affinity tag followed by a SUMO fusion tag for solubility and ease of purification. The plasmid is introduced into competent E. coli cells, and robust protein expression is induced with IPTG. The ALAS cofactor, pyridoxal 5'-phosphate, is inserted during protein production to yield an active enzyme upon purification. After cell lysis, the tagged ALAS protein is isolated via a multistep purification that involves an initial nickel-affinity step, affinity tag cleavage and removal, and a final size exclusion chromatography polishing step. Importantly, this protocol is amenable to various ALAS truncations and mutations, opening the door to understanding ALAS biology and its intersections with iron utilization across several organisms.
Collapse
Affiliation(s)
- Breann L Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
4
|
Babbal, Mohanty S, Khasa YP. Designing Ubiquitin-like protease 1 (Ulp1) based nano biocatalysts: A promising technology for SUMO fusion proteins. Int J Biol Macromol 2024; 255:128258. [PMID: 37984574 DOI: 10.1016/j.ijbiomac.2023.128258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The SUMO proteases (Ulps), a group of cysteine proteases, are well known for their efficient ability to perform structure-based cleavage of SUMO tag from the protein of interest and generation of biotherapeutics with authentic N-terminus. However, the stability of Ulps has remained a challenge for the economical production of difficult-to-produce proteins in E. coli. Therefore, the present study aimed to establish the methodology for developing stable S. pombe Ulp1 preparation using different enzyme immobilization strategies. The whole-cell biocatalyst developed using the Pir1 anchor protein of Pichia cleaved the SUMO tag within 24 h of reaction incubation. The chemical immobilization using commercial epoxy and amino methacrylate beads significantly enhanced the operational reusability of SpUlp1 up to 24 cycles. Silica beads further improved the repetitive usage of the immobilized enzyme for 65 cycles. The SpUlp1 immobilization on laboratory-developed chitosan-coated iron oxide nanoparticles exhibited more than 90 % cleavage of SUMO tag from different substrates even after 100 consecutive reactions. Moreover, an effective SUMO tag removal was observed within 10 min of incubation. The operational stability of the immobilized enzyme was confirmed in a pH range of 5 to 13. The spherical nature of nanoparticles was confirmed by FESEM and TEM results. The successful chitosan coating and subsequent activation with glutaraldehyde were established via FT-IR. Furthermore, HRTEM, SAED, and XRD proved the crystalline nature of nanoparticles, while VSM confirmed the superparamagnetic behavior.
Collapse
Affiliation(s)
- Babbal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
5
|
Reddy Patakottu BK, Vedire VR, Reddy CR. Robust production of active Ulp1 (SUMO protease) from inclusion bodies. Protein Expr Purif 2023; 211:106328. [PMID: 37392905 DOI: 10.1016/j.pep.2023.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
High yield purification of Ulp1 is required during the isolation and purification of SUMO-tagged recombinant proteins. However, when expressed as a soluble protein, Ulp1 is toxic to E. coli host cells and most of the protein forms inclusion bodies. The extraction of insoluble Ulp1 followed by its purification and refolding into its active form is a lengthy and costly procedure. In our present study, we developed a simple, cost effective procedure for the large scale production of active Ulp1 that can be used for industrial scale requirements.
Collapse
Affiliation(s)
- Bala Kota Reddy Patakottu
- LOKA Biosciences Pvt Ltd, ALEAP Industrial Estate, Road No.11, PLOT 14 & 15, Pragati Nagar, Hyderabad, 500090, India.
| | - Vikram Reddy Vedire
- LOKA Biosciences Pvt Ltd, ALEAP Industrial Estate, Road No.11, PLOT 14 & 15, Pragati Nagar, Hyderabad, 500090, India
| | - Chereddy Ramamohan Reddy
- LOKA Biosciences Pvt Ltd, ALEAP Industrial Estate, Road No.11, PLOT 14 & 15, Pragati Nagar, Hyderabad, 500090, India
| |
Collapse
|
6
|
Fu L, Sun M, Wen W, Dong N, Li D. Extracellular production of Ulp1 403-621 in leaky E. coli and its application in antimicrobial peptide production. Appl Microbiol Biotechnol 2022; 106:7805-7817. [PMID: 36260100 DOI: 10.1007/s00253-022-12235-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/02/2022]
Abstract
Small ubiquitin-like modifier (SUMO) tag is widely used to promote soluble expression of exogenous proteins, which can then be cleaved by ubiquitin-like protease 1 (Ulp1) to obtain interested protein. But the application of Ulp1 in large-scale recombinant protein production is limited by complicated purification procedures and high cost. In this study, we describe an efficient and simple method of extracellular production of Ulp1403-621 using a leaky Escherichia coli BL21(DE3), engineered by deleting the peptidoglycan-associated outer membrane lipoprotein (pal) gene. Ulp1403-621 was successfully leaked into extracellular supernatant by the BL21(DE3)-Δpal strain after IPTG induction. The addition of 1% glycine increased the extracellular production of Ulp1403-621 approximately four fold. Moreover, extracellular Ulp1403-621 without purification had high activities for cleaving SUMO fusion proteins, and antimicrobial peptide pBD2 obtained after cleavage can inhibit the growth of Staphylococcus aureus. The specific activity of extracellular Ulp1403-621 containing 1 mM EDTA and 8 mM DTT reached 2.0 × 106 U/L. Another commonly used protease, human rhinovirus 3C protease, was also successfully secreted by leaky E. coli strains. In conclusion, extracellular production of tool enzymes is an attractive way for producing large-scale active recombinant proteins at a lower cost for pharmaceutical, industrial, and biotechnological applications. KEY POINTS: • First report of extracellular production of Ulp1403-621 in leaky Escherichia coli BL21(DE3) strain. • One percent glycine addition into cultivation medium increased the extracellular production of Ulp1403-621 approximately four fold. • The specific activity of extracellular Ulp1403-621 produced in this study reached 2.0 × 106 U/L.
Collapse
Affiliation(s)
- Linglong Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mengning Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weizhang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Na Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Defa Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Mohanty S, Dabburu GR, Kumar M, Khasa YP. Heterologous expression of novel SUMO proteases from Schizosaccharomyces pombe in E. coli: Catalytic domain identification and optimization of product yields. Int J Biol Macromol 2022; 209:1001-1019. [PMID: 35447271 DOI: 10.1016/j.ijbiomac.2022.04.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are efficiently used to target the soluble expression of various difficult-to-express proteins in E. coli. However, its utilization in large scale protein production is restricted by the higher cost of Ulp, which is required to cleave SUMO fusion tag from protein-of-interest to generate an authentic N-terminus. This study identified and characterized two novel SUMO proteases i.e., Ulp1 and Ulp2 from Schizosaccharomyces pombe. Codon-optimized gene sequences were cloned and expressed in E. coli. The sequence and structure of SpUlp1 and SpUlp2 catalytic domains were deduced using bioinformatics tools. Protein-protein interaction studies predicted the higher affinity of SpUlp1 towards SUMO compared to its counterpart from Saccharomyces cerevisiae (ScUlp1). The catalytic domain of SpUlp1 was purified using Ni-NTA chromatography with 83.33% recovery yield. Moreover, In vitro activity data further confirmed the fast-acting nature of SpUlp1 catalytic domain, where a 90% cleavage of fusion proteins was obtained within 1 h of incubation, indicating novelty and commercial relevance of S. pombe Ulp1. Biophysical characterization showed 8.8% α-helices, 36.7% β-sheets in SpUlp1SD. From thermal CD and fluorescence data, SpUlp1SD Tm was found to be 45 °C. Further, bioprocess optimization using fed-batch cultivation resulted in 3.5 g/L of SpUlp1SD production with YP/X of 77.26 mg/g DCW and volumetric productivity of 205.88 mg/L/h.
Collapse
Affiliation(s)
- Shilpa Mohanty
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Govinda Rao Dabburu
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
8
|
Abstract
DNAzymes are a group of DNA molecules that can catalyze various chemical reactions. Owing to their great application potentials, DNAzymes have received significant attention. However, due to their intrinsic difficulties in crystallization and structural determination, only very limited structural information of DNAzymes is available to date. Using co-crystallization with the African Swine Fever Virus Polymerase X (AsfvPolX) protein, we have recently solved a complex structure of the 8-17 DNAzyme, which represents the first structure of the catalytically active RNA-cleaving DNAzyme. In this chapter, we describe the detailed protocols including gene construction, AsfvPolX expression and purification, crystallization, structure determination, and in vitro cleavage assay. While the specific methods described herein were originally designed for the 8-17 DNAzyme, they can also be utilized to solve other DNAzyme structures.
Collapse
Affiliation(s)
- Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Song Mao
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Kim L, Kwon DH, Heo J, Park MR, Song HK. Use of the LC3B-fusion technique for biochemical and structural studies of proteins involved in the N-degron pathway. J Biol Chem 2020; 295:2590-2600. [PMID: 31919097 DOI: 10.1074/jbc.ra119.010912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/19/2019] [Indexed: 11/06/2022] Open
Abstract
The N-degron pathway, formerly the N-end rule pathway, is a protein degradation process that determines the half-life of proteins based on their N-terminal residues. In contrast to the well-established in vivo studies over decades, in vitro studies of this pathway, including biochemical characterization and high-resolution structures, are relatively limited. In this study, we have developed a unique fusion technique using microtubule-associated protein 1A/1B light chain 3B, a key marker protein of autophagy, to tag the N terminus of the proteins involved in the N-degron pathway, which enables high yield of homogeneous target proteins with variable N-terminal residues for diverse biochemical studies including enzymatic and binding assays and substrate identification. Intriguingly, crystallization showed a markedly enhanced probability, even for the N-degron complexes. To validate our results, we determined the structures of select proteins in the N-degron pathway and compared them with the Protein Data Bank-deposited proteins. Furthermore, several biochemical applications of this technique were introduced. Therefore, this technique can be used as a general tool for the in vitro study of the N-degron pathway.
Collapse
Affiliation(s)
- Leehyeon Kim
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Do Hoon Kwon
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jiwon Heo
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Mi Rae Park
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
10
|
Prejit, Pratheesh PT, Nimisha S, Jess V, Asha K, Agarwal RK. Expression and purification of an immunogenic SUMO-OmpC fusion protein of Salmonella Typhimurium in Escherichia coli. Biologicals 2019; 62:22-26. [PMID: 31668855 DOI: 10.1016/j.biologicals.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 01/01/2023] Open
Abstract
Salmonella is found to be a major causes of food borne diseases globally. Poultry products contaminated with this pathogen is one of the major sources of infections in humans. Outer membrane protein C (OmpC) of Salmonella Typhimurium is a promising DNA vaccine candidate to mitigate Salmonella infection in poultry. However, the large-scale production of bioactive recombinant OmpC (rOmpC) protein is hindered due to the formation of inclusion bodies in Escherichia coli. The objective of this work was to attain high level expression of rOmpC protein, purify and evaluate its functional properties. The ompC gene was optimized and fused with small ubiquitin-related modifier (SUMO) gene for high level expression as soluble protein. The fusion protein with ~58 kDa molecular weight was observed on SDS-PAGE gel. The expression levels of rOmpC fusion protein reached maximum of 38% of total soluble protein (TSP) after 8 h of 0.2% rhamnose induction. Protein purification was carried out using nickel nitrilotriacetic acid (Ni-NTA) purification column. Western blot were performed to analyse expression and immunoreactivity of rOmpC fusion protein. The results indicate that SUMO fusion system is ideal for large scale production of functional rOmpC fusion protein expression in E. coli.
Collapse
Affiliation(s)
- Prejit
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India; Centre for One Health Education, Advocacy, Research and Training, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, 673576, India.
| | - Prakasam Thanka Pratheesh
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India
| | - Soman Nimisha
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India
| | - Vergis Jess
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India; Centre for One Health Education, Advocacy, Research and Training, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, 673576, India
| | - Karthikeyan Asha
- Department of Veterinary Public Health, CV&AS, Kerala Veterinary and Animal Sciences University, India
| | - Rajesh Kumar Agarwal
- National Salmonella Centre (Vet), Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P, India
| |
Collapse
|
11
|
Expression, purification, and evaluation of in vivo anti-fibrotic activity for soluble truncated TGF-β receptor II as a cleavable His-SUMO fusion protein. World J Microbiol Biotechnol 2018; 34:181. [PMID: 30474742 DOI: 10.1007/s11274-018-2565-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023]
Abstract
Excessive production of transforming growth factor-β1 (TGF-β1) and its binding to transforming growth factor-β receptor type II (TGF-βRII) promotes fibrosis by activation of the TGF-β1-mediated signaling pathway. Thus, the truncated extracellular domain of TGF-βRII (tTβRII) is a promising anti-fibrotic candidate, as it lacks the signal transduction domain. In this work, the native N-terminal tTβRII was prepared as a His-SUMO fusion protein (termed His-SUMO-tTβRII) in Escherichia coli strain BL21 (DE3). His-SUMO-tTβRII was expressed as a soluble protein under optimal conditions (6 h of induction with 0.5 mM IPTG at 37 °C). His-SUMO-tTβRII was purified by Ni-NTA resin chromatography, and then cleaved with SUMO protease to release native tTβRII, which was re-purified using a Ni-NTA column. Approximately 12 mg of native tTβRII was obtained from a one liter fermentation culture with no less than 95% purity. In vivo studies demonstrated that tTβRII prevented CCl4-induced liver fibrosis, as evidenced by the inhibition of fibrosis-related Col I and α-SMA protein expression in C57BL/6 mice. In addition, tTβRII downregulated phosphorylation of SMAD2/3, which partly repressed TGF-β1-mediated signaling. These data indicate that the His-SUMO expression system is an efficient approach for preparing native tTβRII that possesses anti-liver fibrotic activity, allowing for the large-scale production of tTβRII, which potentially could serve as an anti-fibrotic candidate for treatment of TGF-β1-related diseases.
Collapse
|
12
|
Bioprocess optimization for the overproduction of catalytic domain of ubiquitin-like protease 1 (Ulp1) from S. cerevisiae in E. coli fed-batch culture. Enzyme Microb Technol 2018; 120:98-109. [PMID: 30396406 DOI: 10.1016/j.enzmictec.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
The exploitation of SUMO (small ubiquitin-related modifier) fusion technology at a large scale for the production of therapeutic proteins with an authentic N-terminus is majorly limited due to the higher cost of ScUlp1 protease. Therefore, the cost-effective production of Saccharomyces cerevisiae Ulp1 protease catalytic domain (402-621 aa) was targeted via its cloning under strong T7 promoter with and without histidine tag. The optimization of cultivation conditions at shake flask resulted in ScUlp1 expression of 195 mg/L in TB medium with a specific product yield of 98 mg/g DCW. The leaky expression of the ScUlp1 protease was controlled using the chemically defined minimal medium. The Ni-NTA affinity purification of ScUlp1 was done near homogeneity using different additives (0.1% Triton X-100, 0.01 mM DTT, 0.02 mM EDTA and 1% glycerol) where a product purity of ∼95% with a recovery yield of 80% was obtained. The specific activity of purified ScUlp1 was found to be 3.986 × 105 U/mg. The ScUlp1 protease successfully cleaved the SUMO tag even at 1:10,000 enzyme to substrate ratio with high efficacy and also showed a comparable catalytic efficiency as of commercial control. Moreover, the in vivo cleavage of SUMO tag via co-expression strategy also resulted in more than 80% cleavage of SUMO fusion protein. The optimization of high cell density cultivation strategies and maintenance of higher plasmid stability at bioreactor level resulted in the ScUlp1 production of 3.25 g/L with a specific product yield of 45.41 mg/g DCW when cells were induced at an OD600 of 132 (63.66 g/L DCW).
Collapse
|
13
|
Comparative study of the insoluble and soluble Ulp1 protease constructs as Carrier free and dependent protein immobilizates. J Biosci Bioeng 2018; 127:23-29. [PMID: 30001877 DOI: 10.1016/j.jbiosc.2018.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 11/21/2022]
Abstract
In this study, we analyzed and compared the properties of yeast Ulp1 protease in active inclusion bodies (IBs) as special protein immobilizate, and the soluble Ulp1 via oriented immobilization. Fusion of the N-terminal self-assembling peptide GFIL8 to the Ulp1 increased production of active IBs in Escherichia coli. Attachment of the N-terminal cellulose-binding module facilitated the constructed protein immobilized on the regenerated amorphous cellulose (RAC) with a binding capacity up to about 235 mg protein per gram of RAC. Compared with the immobilized soluble construct, the insoluble Ulp1 showed higher resistance to limited proteolysis with trypsin digestion, lower leaky amount at different storage temperatures, but more rapid decrease in cleavage activity after stored at 4°C for 8 days. The immobilized soluble Ulp1 maintained about 42% initial cleavage activity with repetitive use successively, whereas the aggregated Ulp1 lost its cleavage capacity after cleaving the protein substrate once. Crosslinking of IBs mediated by glutaraldehyde inactivated the Ulp1. Freshly prepared and used IBs showed similar resistance to protease-K digestion, and comparable binding capacity of Congo red and thioflavin T. Taken together, due to different advantages, the Ulp1 constructs as carrier-free and carrier-dependent immobilizates are used under different conditions.
Collapse
|
14
|
Functional expression and purification of recombinant Hepcidin25 production in Escherichia coli using SUMO fusion technology. Gene 2017; 610:112-117. [PMID: 28188870 DOI: 10.1016/j.gene.2017.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/15/2017] [Accepted: 02/06/2017] [Indexed: 02/01/2023]
Abstract
Hepcidin25 is a small cysteine-rich peptide hormone known as a new class of antimicrobial peptides. The purpose of the present study was to express, purify and investigate the antibacterial properties of recombinant human hepcidin25 protein production in Escherichia coli. Human hepcidin25 gene was optimized and fused to a small ubiquitin-related modifier (SUMO) gene for higher expression. Then SUMO-hepcidin25 was cloned into the pET-32a (+) vector and expressed in E. coli Origami. The fusion protein with a molecular weight of approximately 35kDa was analyzed on SDS-PAGE gel. The highest expression was observed after 6h induction and the fusion protein consisted approximately 47% of the total cellular protein. The purified SUMO-hepcidin25 purity was determined to be higher than 95%, with a final yield of 3.9mgl-1 of media. The recombinant hepcidin25 showed antibacterial activity against both Gram negative (Klebsiella pneumonia) and Gram positive (Staphylococcus aureus and Bacillus cereus) bacteria with minimum inhibitory concentrations (MICs) of 150μgml-1, 18.7μg/ml-1 and 37.5μg/ml-1, respectively. These results indicated that thioredoxin and SUMO dual fusion system is an efficient production system for synthesis functional human hepcidin25.
Collapse
|