1
|
Zhang X, Yang F, Zhang J, Zhu T, Zhao X, Liu Y, Wen J, Gu H, Wang G, Ren X, Chen A, Qu L. Genomic variation responding to artificial selection on different lines of Pekin duck. Poult Sci 2025; 104:104785. [PMID: 39813863 PMCID: PMC11783388 DOI: 10.1016/j.psj.2025.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
Understanding the genomic variation in Pekin duck under artificial selection is important for improving the utilization of duck genetic resources. Here, the genomic changes in Pekin duck were analyzed by using the genome resequencing data from 96 individual samples, including 2 conservation populations and 4 breeding populations with different breeding backgrounds. The population structure, runs of homozygosity (ROH), effective population number (Ne), and other genetic parameters were analyzed. The breeding populations showed lower genetic diversity compared to the conservation populations. Maple Leaf duck and Cherry Valley duck retained low genetic diversity compared to other breeding populations, with Cherry Valley duck showing the lowest diversity and the highest inbreeding coefficient. This suggested that Cherry Valley and Maple Leaf ducks have undergone intensive selection compared to other breeding populations. By the analysis of runs of homozygosity (ROHs), some genes (e.g., IGF1R) associated with growth traits were identified. By the analysis of the selection signal, strong selection characteristics in certain genomic regions during the breeding of Peking duck across different selected lines were observed. In addition, copy number variations (CNVs) in Pekin duck populations were analyzed. Six regions of interest were identified, containing RPA1, DOT1L, SLC25A42, RALYL, TRPA1, and IGFBP2. Furthermore, the allele frequency distribution of these genes showed significant differences between breeding populations and conservation populations, indicating that these candidate genes could have undergone strong selection pressure during long-term selection for improved production. These findings contribute to a deeper understanding of the distinct evolutionary processes in Pekin ducks under artificial selection and provide valuable insights for future breeding strategies.
Collapse
Affiliation(s)
- Xinye Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Fangxi Yang
- Beijing Nankou Duck Breeding Technology Co. Ltd., Beijing, China
| | - Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Yuchen Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Junhui Wen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Hongchang Gu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Gang Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xufang Ren
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Anqi Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China.
| |
Collapse
|
2
|
Bai J, Wang X, Zhao Y. Research Note: Association of insulin-like growth factor 1 receptor gene polymorphism with production performance in Savimalt and French Giant meat-type quails. Poult Sci 2023; 102:103074. [PMID: 37856909 PMCID: PMC10591003 DOI: 10.1016/j.psj.2023.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to investigate the association of insulin-like growth factor 1 receptor (IGF-1R) gene single nucleotide polymorphisms (SNPs) with growth traits and carcass traits of quail by PCR amplification and direct sequencing technology. Genomic DNA was extracted from blood samples collected from 49 female French Giant (FG) quails and 36 female Savimalt (SV) quails as part of this study. Growth traits and carcass traits were measured and assessed for IGF-1R gene analysis in the 2 meat-type quail strains. The results showed that 2 SNPs (A57G and A72T) of the IGF-1R gene were detected in the 2 quail strains. The A57G (P = 0.002) and A72T (P = 0.026) were significantly associated with breastbone length (BBL) in FG. Whereas A57G was significantly associated with chest weight (CW, P = 0.004), BBL (P = 0.009), and body length (BL, P = 0.009) in SV, while A72T was significantly associated with BBL (P = 0.014) and BL (P = 0.028) in SV. Haplotypes based on these 2 SNPs showed significant effects on BBL in FG strain (P = 0.000), and they also had significant effects on CW (P = 0.007), BBL (P = 0.004), and BL (P = 0.001) in SV strain. Additionally, A57G was significantly associated with liver rate (LR) in FG strain (P = 0.017). A72T showed significant associations with dressed carcass weight (DCW, P = 0.048) and breast muscle weight (BMW, P = 0.018) in FG strain. A57G was significantly associated with DCW (P = 0.048), whole net carcass weight (WNCW, P = 0.048), BMW (P = 0.036), and liver muscle rate (LMR, P = 0.003) in SV strain. Haplotypes also displayed significant effects on BMW (P = 0.029) and LMR (P = 0.010) in FG strain. These findings indicated that the IGF-1R gene could serve as a valuable molecular genetic marker for enhancing growth traits and carcass traits in meat-type quails.
Collapse
Affiliation(s)
- Junyan Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Xinle Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yonggang Zhao
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| |
Collapse
|
3
|
Zhong G, Yang Q, Wang Y, Liang Y, Wang X, Zhao D. Long noncoding RNA X-inactive specific transcript (lncRNA XIST) inhibits hepatic insulin resistance by competitively binding microRNA-182-5p. Immun Inflamm Dis 2023; 11:e969. [PMID: 38018594 PMCID: PMC10629262 DOI: 10.1002/iid3.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND What is highlighted in this study refers to the role and molecular mechanism of long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) in cells with insulin resistance (IR). METHODS In this study, LX-2 cells were applied to establish IR model in vitro. The expressions of lncRNA XIST, phosphoenolpyruvate carboxykinase (PEPCK,) and glucose-6-phosphatase (G6Pase) were quantified by quantitative reverse transcription polymerase chain reaction. The 2-deoxy-d-glucose-6-phosphate (2-DG6P) level was detected utilizing 2-deoxy-d-glucose (2-DG) uptake measurement kit. Western blot was adopted to measure the protein expressions of insulin-like growth factor-1 receptor (IGF-1R), G6Pase, PEPCK, and phosphatidylinositol 3-kinase (PI3K)/Akt pathway-related genes. StarBase was used to predict the targeting relationship between lncRNA XIST or IGF-1R with miR-182-5p, the results of which were verified by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. Rescue experiments were conducted to investigate the effect of miR-182-5p on IR cells. Next, low-expressed lncRNA XIST and high-expressed miR-182-5p were observed in IR cells. RESULTS Upregulation of lncRNA XIST increased IGF-1R and 2-DG6P levels, decreased G6Pase and PEPCK expressions, and promoted PI3K/Akt pathway activation in IR cells. LncRNA XIST sponged miR-182-5p which targeted IGF-1R. MiR-182-5p mimic reversed the above effects of lncRNA XIST overexpression on IR cells. CONCLUSIONS In conclusion, lncRNA XIST/miR-182-5p axis alleviates hepatic IR in vitro via IGF-1R/PI3K/Akt signaling pathway, which could be the promising therapeutic target.
Collapse
Affiliation(s)
- Guoqing Zhong
- Hepatology DepartmentFirst People's HospitalNanyangChina
| | - Qingping Yang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Yihua Wang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Yuan Liang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Xiaojing Wang
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| | - Dongli Zhao
- Endocrinology DepartmentFirst People's HospitalNanyangChina
| |
Collapse
|
4
|
Dou M, Azad MAK, Cheng Y, Ding S, Liu Y, Song B, Kong X. Expressions of Insulin-like Growth Factor System among Different Breeds Impact Piglets' Growth during Weaning. Animals (Basel) 2023; 13:3011. [PMID: 37835617 PMCID: PMC10571838 DOI: 10.3390/ani13193011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigated the insulin-like growth factors (IGFs) and their receptors and binding proteins among three pig breeds during weaning. Sixty Duroc (DR), Taoyuan black (TYB), and Xiangcun black (XCB) piglets (20 piglets per breed) were selected at 21 and 24 (3 days of post-weaning) days of age to analyze organ indices, plasma concentrations of IGF and IGF-binding proteins (IGFBPs) using ELISA kits, and gene expression of IGF-system-related components in different tissues. The plasma IGFBP-3 concentration in TYB piglets was higher (p > 0.05) than in the XCB and DR piglets at 21 days of age. At 21 days of age, compared with the DR piglets, the IGF-1 expression was lower (p < 0.05) in the kidney, but it was higher (p < 0.05) in the spleen of XCB and TYB piglets. At 24 days of age, the IGF-1 expression was higher (p < 0.05) in the kidney of TYB piglets than in the XCB and DR piglets, while IGFBP-3 in the stomach and IGFBP-4 in the liver of XCB and TYB piglets were lower (p < 0.05) compared with the DR piglets. Weaning down-regulated (p < 0.05) IGF-1 expression in the jejunum, spleen, and liver of piglets, while it up-regulated (p < 0.05) IGFBP-3 expression in the stomach, IGFBP-4 in the liver, IGFBP-5 in the ileum, and IGFBP-6 in the jejunum of DR piglets. Spearman's correlation analysis showed a negative correlation (p < 0.05) between plasma IGFBP-2 and IGFBP-5 concentration and the organ indices of piglets. Collectively, there were significant differences in the IGF system components among the three pig breeds. The IGF system components were altered during weaning, which might be involved in weaning stress to decrease the growth of piglets.
Collapse
Affiliation(s)
- Mengying Dou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yating Cheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Sujuan Ding
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
| | - Bo Song
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (M.D.); (M.A.K.A.); (Y.C.); (S.D.); (Y.L.); (B.S.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
5
|
Wang Z, Wang C, Zhang Y, Liu S, Cheng Y, Wang S, Xia P, Hao L. Porcine IGF-1R synonymous mutations in the extracellular domain affect proliferation and differentiation of skeletal muscle cells. Gene 2023; 854:147098. [PMID: 36496177 DOI: 10.1016/j.gene.2022.147098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Miniature pigs are considered ideal organ donors for xenotransplantation in humans, but the mechanism underlying their dwarfism remains to be elucidated. IGF-1R is a crucial factor in body size formation in mammals, including skeletal muscle formation and development. The extracellular domain (ECD) binds to the ligand, a phenomenon that results in the activation of downstream pathways. METHODS In this study, the coding sequences of two IGF-1R ECD haplotypes of the large Landrace (LP) pig and the small Bama Xiang (BM) pig were cloned into pcDNA3.1 vectors to generate pcDNA3.1-LP and pcDNA3.1-BM. The two recombinant vectors were then transfected into skeletal muscle cells. RESULTS IGF-1R transcript was found to be expressed at higher levels in the pcDNA3.1-LP group than in the pcDNA3.1-BM group. The IGF-1R ECD from LP promoted cell proliferation and CyclinD1 expression, and promoted the phosphorylation of protein kinase B (to yield p-AKT). Moreover, the IGF-1R ECD from LP increased cell differentiation and the expression of myogenic determination factor (MyoD). CONCLUSION Our data indicated that the IGF-1R ECD haplotypes between pig breeds with different body sizes affect IGF-1R expression, in turn affecting the proliferation and differentiation of skeletal muscle cells by activating downstream signalling pathways.
Collapse
Affiliation(s)
- Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, Jilin 130061, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, Jilin 130061, China
| | - Ying Zhang
- College of Animal Science, Jilin University, Changchun, Jilin 130061, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun, Jilin 130061, China.
| | - Yunyun Cheng
- Ministry of Health Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun, Jilin 130061, China
| | - Siyao Wang
- College of Animal Science, Jilin University, Changchun, Jilin 130061, China
| | - Peijun Xia
- College of Animal Science, Jilin University, Changchun, Jilin 130061, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
6
|
Yan S, Pei Y, Li J, Tang Z, Yang Y. Recent Progress on Circular RNAs in the Development of Skeletal Muscle and Adipose Tissues of Farm Animals. Biomolecules 2023; 13:biom13020314. [PMID: 36830683 PMCID: PMC9953704 DOI: 10.3390/biom13020314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding.
Collapse
Affiliation(s)
- Shanying Yan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jiju Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| |
Collapse
|
7
|
Teng Z, Hao L, Yang R, Song J, Wang Z, Jiao Y, Fang J, Zheng S, Ma Z, Chen X, Liu S, Cheng Y. Key pituitary miRNAs mediate the expression of pig GHRHR splice variants by regulating splice factors. Int J Biol Macromol 2022; 208:208-218. [PMID: 35306020 DOI: 10.1016/j.ijbiomac.2022.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
The growth hormone releasing hormone receptor (GHRHR) is well documented in organism growth and its alternative splicing may generate multiple functional GHRHR splice variants (SVs). Our previous study has demonstrated the key pituitary miRNAs (let-7e and miR-328-5p) in pig regulated the expression of GHRHR SVs by directly targeting to them. And according to recent reports, the interplay between miRNA-based silencing of mRNAs and alternative splicing of pre-mRNAs is a crucial post-transcriptional mechanism. In this study, SF3B3 and CPSF4 were firstly excavated as the splice factors that involved in the formation of GHRHR SVs mediated by let-7e and miR-328-5p through the comparation of the expression relations of GHRHR SVs, let-7e/miR-328-5p and SF3B3/CPSF4 in pituitary tissues between Landrace pigs and BaMa pigs, as well as the prediction of the target relations of let-7e/miR-328-5p with SF3B3 and/or CPSF4. SF3B3 and CPSF4 targeted by let-7e and miR-328-5p were further verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. Then the RT-PCR, RT-qPCR and Western blot assays were used to confirm SF3B3 and CPSF4 were involved in the formation of the GHRHR SVs, and in this process, let-7e and miR-328-5p mediated GHRHR SVs by regulating SF3B3 and CPSF4. Finally, the target site of SF3B3 on pre-GHRHR was on the Exon 12 to Exon14, while CPSF4 acted on the other fragments of the pre-GHRHR, which were explored by dual-luciferase reporter system preliminarily. To the best of our knowledge, this paper is the first to report the miRNAs regulate GHRHR SVs indirectly by splice factors.
Collapse
Affiliation(s)
- Zhaohui Teng
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yingying Jiao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Jiayuan Fang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Ze Ma
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Wang S, Cheng Y, Liu S, Xu Y, Gao Y, Wang C, Wang Z, Feng T, Lu G, Song J, Xia P, Hao L. A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1446-1465. [PMID: 34938600 PMCID: PMC8655398 DOI: 10.1016/j.omtn.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is considered to be a crucial gene in the animal development of bone and body size. In this study, a unique synonymous mutation (c.258 A > G) of the IGF-1 gene was modified with an adenine base editor to observe the growth and developmental situation of mutant mice. Significant expression differences and molecular mechanisms among vectors with different alanine synonymous codons were explored. Although modification of a single synonymous codon rarely interferes with animal phenotypes, we observed that the expression and secretion of IGF-1 were different between 8-week-old homozygous (Ho) and wild-type (WT) mice. In addition, the IGF-1 with optimal codon combinations showed a higher expression content than other codon combination modes at both transcription and translation levels and performed proliferation promotion. The gene stability and translation initiation efficiency also changed significantly. Our findings illustrated that the synonymous mutation altered the IGF-1 gene expression in individual mice and suggested that the synonymous mutation affected the IGF-1 expression and biological function through the transcription and translation processes.
Collapse
Affiliation(s)
- S.Y. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Y.Y. Cheng
- Ministry of Health Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - S.C. Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y.X. Xu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y. Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - C.L. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Z.G. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - T.Q. Feng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - G.H. Lu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - J. Song
- College of Animal Science, Jilin University, Changchun 130062, China
| | - P.J. Xia
- College of Animal Science, Jilin University, Changchun 130062, China
| | - L.L. Hao
- College of Animal Science, Jilin University, Changchun 130062, China
- Corresponding author: Linlin Hao, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
Jiang R, Wang M, Shen X, Huang S, Han J, Li L, Xu Z, Jiang C, Zhou Q, Feng X. SUMO1 modification of IGF-1R combining with SNAI2 inhibited osteogenic differentiation of PDLSCs stimulated by high glucose. Stem Cell Res Ther 2021; 12:543. [PMID: 34663464 PMCID: PMC8522165 DOI: 10.1186/s13287-021-02618-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Background Periodontal disease, an oral disease characterized by loss of alveolar bone and progressive teeth loss, is the sixth major complication of diabetes. It is spreading worldwide as it is difficult to be cured. The insulin-like growth factor 1 receptor (IGF-1R) plays an important role in regulating functional impairment associated with diabetes. However, it is unclear whether IGF-1R expression in periodontal tissue is related to alveolar bone destruction in diabetic patients. SUMO modification has been reported in various diseases and is associated with an increasing number of biological processes, but previous studies have not focused on diabetic periodontitis. This study aimed to explore the role of IGF-1R in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in high glucose and control the multiple downstream damage signal factors. Methods PDLSCs were isolated and cultured after extraction of impacted teeth from healthy donors or subtractive orthodontic extraction in adolescents. PDLSCs were cultured in the osteogenic medium with different glucose concentrations prepared by medical 5% sterile glucose solution. The effects of different glucose concentrations on the osteogenic differentiation ability of PDLSCs were studied at the genetic and cellular levels by staining assay, Western Blot, RT-PCR, Co-IP and cytofluorescence. Results We found that SNAI2, RUNX2 expression decreased in PDLSCs cultured in high glucose osteogenic medium compared with that in normal glucose osteogenic medium, which were osteogenesis-related marker. In addition, the IGF-1R expression, sumoylation of IGF-1R and osteogenic differentiation in PDLSCs cultured in high glucose osteogenic medium were not consistent with those cultured in normal glucose osteogenic medium. However, osteogenic differentiation of PDLCSs enhanced after adding IGF-1R inhibitors to high glucose osteogenic medium. Conclusion Our data demonstrated that SUMO1 modification of IGF-1R inhibited osteogenic differentiation of PDLSCs by binding to SNAI2 in high glucose environment, a key factor leading to alveolar bone loss in diabetic patients. Thus we could maximize the control of multiple downstream damage signaling factors and bring new hope for alveolar bone regeneration in diabetic patients.
Collapse
Affiliation(s)
- Rongrong Jiang
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Miao Wang
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Xiaobo Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianpeng Han
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Lei Li
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhiliang Xu
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Chengfeng Jiang
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
10
|
Zhang Z, Ren H, Shen G, Zhao W, Shang Q, Yu X, Lu Y, Yu P, Zhang Y, Tang J, Liang D, Jiang X. IGF-1R/β-catenin signaling axis is implicated in streptozotocin exacerbating bone impairment in ovariectomized rats. Climacteric 2020; 24:179-186. [PMID: 33000666 DOI: 10.1080/13697137.2020.1816956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role of the insulin-like growth factor-1 receptor (IGF-1R)/β-catenin signaling axis in bone impairment induced by hyperglycemia in ovariectomized rats. METHODS Rats were divided into four groups. The sham group received sham operation and a single intraperitoneal administration of vehicle. The ovariectomy (OVX) group was subjected to bilateral OVX and vehicle injection. The streptozotocin (STZ) group received sham operation and a single STZ injection to induce hyperglycemia. The OVX + STZ group received bilateral OVX and a single STZ injection. Dual-energy X-ray absorptiometry measurement, bone biomechanics test, micro-computed tomography scan, and hematoxylin-eosin staining were performed to evaluate bone alteration in this model. The expression of relevant signals including IGF-1R, glycogen synthase kinase-3β (GSK-3β), and β-catenin were examined by quantitative real-time polymerase chain reaction and western blot. RESULTS The OVX, STZ, and OVX + STZ groups induced bone loss, attenuated bone strength, and impaired microarchitecture compared with the sham group, respectively. Compared with OVX, more serious bone damage was found in the OVX + STZ group, which showed enhanced phosphorylation of IGF-1R, GSK-3β, and β-catenin. CONCLUSION OVX plus STZ induced more serious bone impairment than OVX alone, which involves the IGF-1R/β-catenin signaling axis in the pathogenesis. This may provide a potential target for treatment of postmenopausal diabetic osteoporosis.
Collapse
Affiliation(s)
- Z Zhang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - H Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - G Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - W Zhao
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Q Shang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - X Yu
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Y Lu
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - P Yu
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Y Zhang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - J Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - D Liang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - X Jiang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Wang C, Wang S, Liu S, Cheng Y, Geng H, Yang R, Feng T, Lu G, Sun X, Song J, Hao L. Synonymous Mutations of Porcine Igf1r Extracellular Domain Affect Differentiation and Mineralization in MC3T3-E1 Cells. Front Cell Dev Biol 2020; 8:623. [PMID: 32754602 PMCID: PMC7381325 DOI: 10.3389/fcell.2020.00623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Owing to the wide application of miniature pigs in biomedicine, the formation mechanism of its short stature must be elucidated. The insulin-like growth factor 1 receptor (IGF-1R), which receives signals through the extracellular domain (ECD) binding with ligands, is crucial in regulating cell growth and bone matrix mineralization. In this study, two haplotypes of Igf1r with four synonymous mutations in the coding sequences of IGF-1R ECD between large pigs (LP) and Bama pigs (BM) were stably expressed in the Igf1r-knockout MC3T3-E1 cells and named as MC3T3-LP cells (LP group) and MC3T3-BM cells (BM group), respectively. IGF-1R expression was lower in the BM group than in the LP group both in terms of transcription and translation levels, and IGF-1R expression inhibited cell proliferation. In addition, IGF-1R expression in the BM group promoted early-stage differentiation but delayed late-stage differentiation, which not only suppressed the expression of bone-related factors but also reduced alkaline phosphatase activity and calcium deposition. Moreover, different haplotypes of Igf1r changed the stability and conformation of the protein, further affecting the binding with IGF-1. Our data indicated that the four synonymous mutations of IGF1R ECD encoded by affect gene transcription and translation, thereby further leading to differences in the downstream pathways and functional changes of osteoblasts.
Collapse
Affiliation(s)
- Chunli Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Songcai Liu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yunyun Cheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongwei Geng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Rui Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaotong Sun
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Sciences, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Cheng Y, Chen T, Song J, Teng Z, Wang C, Wang S, Lu G, Feng T, Qi Q, Xi Q, Liu S, Hao L, Zhang Y. Pituitary miRNAs target GHRHR splice variants to regulate GH synthesis by mediating different intracellular signalling pathways. RNA Biol 2020; 17:1754-1766. [PMID: 32508238 DOI: 10.1080/15476286.2020.1778295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Growth hormone (GH), whose synthesis and release are mainly regulated by intracellular signals mediated by growth hormone-releasing hormone receptor (GHRHR), is one of the major pituitary hormones and critical regulators of organism growth, metabolism, and immunoregulation. Pig GHRHR splice variants (SVs) may activate different signalling pathways via the variable C-terminal by alternative splicing, and SVs have the potential to change microRNA (miRNA) binding sites. In this study, we first confirmed the existence of pig GHRHR SVs (i.e., GHRHR, GHRHR SV1 and SV2) and demonstrated the inhibitory effects of critical pituitary miRNAs (i.e., let-7e and miR-328-5p) on GH synthesis and cell proliferation of primary pituitary cells. The SVs of GHRHR targeted by let-7e and miR-328-5p were predicted via bioinformatics analysis and verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. The differential responses of let-7e, and miR-328-5p to GH-releasing hormone and the changes in signalling pathways mediated by GHRHR suggested that let-7e and miR-328-5p were involved in GH synthesis mediated by GHRHR SVs, indicating that the two miRNAs played different roles by different ways. Finally, results showed that the protein coded by the GHRHR transcript regulated GH through the NO/NOS signalling pathway, whereas that coded by SV1 and SV2 regulated GH through the PKA/CREB signalling pathway, which was confirmed by the changes in signalling pathways after transfecting the expression vectors of GHRHR SVs to GH3 cells. To the best of our knowledge, this paper is the first to report pituitary miRNAs regulate GH synthesis by targeting the different SVs of GHRHR.
Collapse
Affiliation(s)
- Yunyun Cheng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Jie Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Zhaohui Teng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China.,Research and Development Centre, Dalian Mogue Biotech Co., Ltd , Dalian, China
| | - Chunli Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Siyao Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Guanhong Lu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Tianqi Feng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University , Foshan China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| | - Songcai Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Linlin Hao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University , Changchun, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University , Guangzhou, China
| |
Collapse
|
13
|
Wang C, Liu S, Wu Q, Cheng Y, Feng T, Song J, Yang R, Geng H, Lu G, Wang S, Hao L. Porcine IGF-1R synonymous mutations in the intracellular domain affect cell proliferation and alter kinase activity. Int J Biol Macromol 2020; 152:147-153. [PMID: 32109480 DOI: 10.1016/j.ijbiomac.2020.02.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Abstract
Miniature pigs are regarded as ideal organ donors for xenotransplantation into humans. Elucidating the formation mechanism of miniature pigs is important. The insulin-like growth factor 1 receptor (IGF-1R) is crucial in the regulation of cell proliferation and organismal growth. According to our previous research, the IGF-1R expression levels between large and miniature pigs showed different profiles in liver and muscle tissues. Here, five synonymous mutations of IGF-1R in the coding sequence (CDS) of intracellular domain (ICD) between large and miniature pigs were analysed by constructing expression vectors of two haplotypes and named pcDNA3.1-LP (with the CDS of IGF-1R ICD of Large White pigs, LP group) and pcDNA3.1-BM (with the CDS of IGF-1R ICD of Bama Xiang pigs, BM group). The IGF-1R of the BM group was expressed lower than that of the LP group in transcription, translation and autophosphorylation levels. The IGF-1R of the BM group also down-regulated the protein levels of p-AKT/p-ERK than that of the LP group. PK-15 and C2C12 cell proliferation were detected to further understand the function of the haplotype. Results showed that the proliferation viability of PK-15 and C2C12 cells weakened in the BM group. Moreover, the mRNA and protein stabilities of the BM group were higher than those of the LP group. Our data indicated that two haplotypes of IGF-1R CDS in ICD between large and miniature pigs altered IGF-1R expression and down-regulated AKT and ERK signalling pathways at translation levels, resulting in an inhibitory effect on PK-15 and C2C12 cell proliferation.
Collapse
Affiliation(s)
- Chunli Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China; Five-Star Animal Health Pharmaceutical Factory of Jilin Province, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Qingyan Wu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Yunyun Cheng
- Guangdong Provincial Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jie Song
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hongwei Geng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Guanhong Lu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Siyao Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|
14
|
Zhang ZD, Ren H, Wang WX, Shen GY, Huang JJ, Zhan MQ, Tang JJ, Yu X, Zhang YZ, Liang D, Yang ZD, Jiang XB. IGF-1R/β-catenin signaling axis is involved in type 2 diabetic osteoporosis. J Zhejiang Univ Sci B 2020; 20:838-848. [PMID: 31489803 DOI: 10.1631/jzus.b1800648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) is involved in both glucose and bone metabolism. IGF-1R signaling regulates the canonical Wnt/β-catenin signaling pathway. In this study, we investigated whether the IGF-1R/ β-catenin signaling axis plays a role in the pathogenesis of diabetic osteoporosis (DOP). Serum from patients with or without DOP was collected to measure the IGF-1R level using enzyme-linked immunosorbent assay (ELISA). Rats were given streptozotocin following a four-week high-fat diet induction (DOP group), or received vehicle after the same period of a normal diet (control group). Dual energy X-ray absorption, a biomechanics test, and hematoxylin-eosin (HE) staining were performed to evaluate bone mass, bone strength, and histomorphology, respectively, in vertebrae. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to measure the total and phosphorylation levels of IGF-1R, glycogen synthase kinase-3β (GSK-3β), and β-catenin. The serum IGF-1R level was much higher in patients with DOP than in controls. DOP rats exhibited strikingly reduced bone mass and attenuated compression strength of the vertebrae compared with the control group. HE staining showed that the histomorphology of DOP vertebrae was seriously impaired, which manifested as decreased and thinned trabeculae and increased lipid droplets within trabeculae. PCR analysis demonstrated that IGF-1R mRNA expression was significantly up-regulated, and western blotting detection showed that phosphorylation levels of IGF-1R, GSK-3β, and β-catenin were enhanced in DOP rat vertebrae. Our results suggest that the IGF-1R/β-catenin signaling axis plays a role in the pathogenesis of DOP. This may contribute to development of the underlying therapeutic target for DOP.
Collapse
Affiliation(s)
- Zhi-Da Zhang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- Department of Spinal Surgery, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei-Xi Wang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Geng-Yang Shen
- Department of Spinal Surgery, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jin-Jing Huang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Mei-Qi Zhan
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing-Jing Tang
- Department of Spinal Surgery, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu-Zhuo Zhang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - De Liang
- Department of Spinal Surgery, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhi-Dong Yang
- Department of Spinal Surgery, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bing Jiang
- Department of Spinal Surgery, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
15
|
Cheng Y, Liu S, Wang G, Wei W, Huang S, Yang R, Geng H, Li H, Song J, Sun L, Yu H, Hao L. Porcine IGF1 synonymous mutation alter gene expression and protein binding affinity with IGF1R. Int J Biol Macromol 2018; 116:23-30. [PMID: 29738863 DOI: 10.1016/j.ijbiomac.2018.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Insulin like growth factor 1 (IGF1) is privotal in the regulation of animal growth and is a single-chain globular protein composed of B, C, A, and D regions, of which the C region is involved in maintaining high affinity binding to the IGF1 receptor (IGF1R). PURPOSE In this study, significant expression differences between large pigs and miniature pigs were detected and only one synonymous SNP (c.258G>A) in the C region of the coding sequence of IGF1 gene was screened. The aim of this manuscript was to clear the function of the SNP and clarify the mechanism of its influnce. METHODS The expression vectors contained A allele and G allele were constructed, and the expression assays of the two groups were determined by qRT-PCR and western blotting, then the stability assays of the mRNA and protein were carried out under the inhibitation of actinomycin D and cycloheximide, respectively. At last, the binding affinity of IGF1-G and IGF1-A with IGF1R were indicated by co-immunoprecipitation and double immunofluorescence labeling methods, the conformation difference was detected by differential immunodetection. RESULTS The IGF1-G expressed higher than IGF1-A in both transcription and translation levels, and the mRNA and protein stabilities of IGF1-G were lower than IGF1-A (P < 0.05). Furthermore, the relative binding affinity of GG-genotype IGF1 with IGF1R was significantly higher than that of the AA-genotype IGF1 (P < 0.05), and there was a difference in the conformation of the IGF1 with two genotypes. CONCLUSION Our findings indicated the synonymous mutation altered the IGF1 gene expression and confirmed the synonymous mutation affected the IGF1 folding and the interactions with the IGF1R preliminarily.
Collapse
Affiliation(s)
- Yunyun Cheng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China; Five-Star Animal Health Pharmaceutical Factory of Jilin Province, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Gang Wang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Wenzhen Wei
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Shan Huang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Hongwei Geng
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Haoyang Li
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Jie Song
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China
| | - Lidan Sun
- Beijing Tong He Sheng Tai Institute of Comparative Medicine, Beijing, China
| | - Hao Yu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China.
| | - Linlin Hao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, China.
| |
Collapse
|