1
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
2
|
Prabhu MPT, Chrungoo S, Sarkar N. Carboxylic Group Functionalized Carbon Quantum Dots inhibit Hen Egg White Lysozyme Amyloidogenesis, leading to the Formation of Spherical Aggregates with Reduced Toxicity and ROS Generation. Curr Protein Pept Sci 2024; 25:626-637. [PMID: 38659260 DOI: 10.2174/0113892037294778240328041907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Proteinopathies are a group of diseases where the protein structure has been altered. These alterations are linked to the production of amyloids, which are persistent, organized clumps of protein molecules through inter-molecular interactions. Several disorders, including Alzheimer's and Parkinson's, have been related to the presence of amyloids. Highly ordered beta sheets or beta folds are characteristic of amyloids; these structures can further self- assemble into stable fibrils. METHODS Protein aggregation is caused by a wide variety of environmental and experimental factors, including mutations, high pH, high temperature, and chemical modification. Despite several efforts, a cure for amyloidosis has yet to be found. Due to its advantageous semi-conducting characteristics, unique optical features, high surface area-to-volume ratio, biocompatibility, etc., carbon quantum dots (CQDs) have lately emerged as key instruments for a wide range of biomedical applications. To this end, we have investigated the effect of CQDs with a carboxyl group on their surface (CQD-CA) on the in vitro amyloidogenesis of hen egg white lysozyme (HEWL). RESULTS By generating a stable compound that is resistant to fibrillation, our findings show that CQD-CA can suppress amyloid and disaggregate HEWL. In addition, CQD-CA caused the creation of non-toxic spherical aggregates, which generated much less reactive oxygen species (ROS). CONCLUSION Overall, our results show that more research into amyloidosis treatments, including surface functionalized CQDs, is warranted.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
3
|
Mitra A, Sarkar N. Elucidating the inhibitory effects of rationally designed novel hexapeptide against hen egg white lysozyme fibrillation at acidic and physiological pH. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140899. [PMID: 36693516 DOI: 10.1016/j.bbapap.2023.140899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/23/2023]
Abstract
Inhibition of highly ordered cross-β-sheet-rich aggregates of misfolded amyloid proteins using rationally designed sequence-based short peptides is a promising therapeutic strategy for the treatment of neurodegenerative diseases. Here, we have explored the anti-amyloidogenic potency of a rationally designed hexapeptide (Tyr-Pro-Gln-Ile-Pro-Asn) on in vitro hen egg white lysozyme (HEWL) amyloid fibril formation at acidic pH and physiological pH using computational docking as well as various biophysical techniques such as fluorescence spectroscopy, UV-vis spectroscopy, FTIR spectroscopy, confocal microscopy and TEM. The peptide was designed based on the aggregation-prone region (APR) of HEWL and thus referred to as SqP1 (Sequence-based Peptide 1). SqP1 showed over 70% inhibition of HEWL amyloid formation at pH 2.2 and approximately 50% inhibition at pH 7.5. We propose that SqP1 binds to the APR of HEWL and interacts strongly with the Trp62/Trp63, ultimately stabilizing monomeric HEWL at both the pH conditions and preventing conformation changes in the structure of HEWL, leading to the formation of amyloidogenic fibrillar structures. A sequence-based peptide inhibitor of HEWL amyloid formation was not reported previously, making this a critical study that will further emphasize the importance of short synthetic peptides as amyloid inhibitors.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
4
|
Almeida ZL, Brito RMM. Amyloid Disassembly: What Can We Learn from Chaperones? Biomedicines 2022; 10:3276. [PMID: 36552032 PMCID: PMC9776232 DOI: 10.3390/biomedicines10123276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Protein aggregation and subsequent accumulation of insoluble amyloid fibrils with cross-β structure is an intrinsic characteristic of amyloid diseases, i.e., amyloidoses. Amyloid formation involves a series of on-pathway and off-pathway protein aggregation events, leading to mature insoluble fibrils that eventually accumulate in multiple tissues. In this cascade of events, soluble oligomeric species are formed, which are among the most cytotoxic molecular entities along the amyloid cascade. The direct or indirect action of these amyloid soluble oligomers and amyloid protofibrils and fibrils in several tissues and organs lead to cell death in some cases and organ disfunction in general. There are dozens of different proteins and peptides causing multiple amyloid pathologies, chief among them Alzheimer's, Parkinson's, Huntington's, and several other neurodegenerative diseases. Amyloid fibril disassembly is among the disease-modifying therapeutic strategies being pursued to overcome amyloid pathologies. The clearance of preformed amyloids and consequently the arresting of the progression of organ deterioration may increase patient survival and quality of life. In this review, we compiled from the literature many examples of chemical and biochemical agents able to disaggregate preformed amyloids, which have been classified as molecular chaperones, chemical chaperones, and pharmacological chaperones. We focused on their mode of action, chemical structure, interactions with the fibrillar structures, morphology and toxicity of the disaggregation products, and the potential use of disaggregation agents as a treatment option in amyloidosis.
Collapse
Affiliation(s)
| | - Rui M. M. Brito
- Chemistry Department and Coimbra Chemistry Centre—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
5
|
Ahmad A, Mishra R. Polyol and sugar osmolytes stabilize the molten globule state of α-lactalbumin and inhibit amyloid fibril formation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140853. [PMID: 36096464 DOI: 10.1016/j.bbapap.2022.140853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Protein misfolding and aggregation are associated with several human diseases such as Alzheimer's, Parkinson's, prion related disorders, type-II diabetes, etc. Different strategies using molecular chaperones, synthetic and naturally occurring small molecules, osmolytes, etc. have been used to prevent protein aggregation and amyloid fibril formation. In this study, we have used bovine α-lactalbumin at pH 1.6, 37 °C, and shaking conditions to promote amyloid fibril formation. Polyol and sugar osmolytes like glycerol, sorbitol, and trehalose have been used to inhibit the fibrillation of a number of proteins. In the present work, amyloid fibril formation of α-lactalbumin has been shown by ThT assay and AFM, while changes in the secondary structure during fibrillation has been followed by circular dichroism spectroscopy. Our results show that glycerol, sorbitol, and trehalose affect amyloid fibril formation of α-lactalbumin in a concentration-dependent manner. There is a delay in the lag phase of amyloid fibril formation in sorbitol and trehalose and complete inhibition in 6 M glycerol. Our results indicate that delay in the lag phase and inhibition of amyloid fibril formation are due to the stabilization of molten globule state by these osmolytes. At pH 1.6, the molten globule as well as the amyloid fibrils bind to ANS. However, when pH was shifted from 1.6 to 7, only the oligomeric and the fibrillar species bind to ANS due to refolding of molten globule state. The outcome of this study might be useful in designing small molecules which may stabilize the intermediate states, thus preventing amyloid fibril formation.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Low KJY, Venkatraman A, Mehta JS, Pervushin K. Molecular mechanisms of amyloid disaggregation. J Adv Res 2022; 36:113-132. [PMID: 35127169 PMCID: PMC8799873 DOI: 10.1016/j.jare.2021.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Importance of disaggregation mechanism and innate disaggregation in living systems. Different types and mechanism of disaggregation reported in literature. Structural details of the interactions and the disaggregation mechanisms. Amyloid disaggregation in protein aggregation disorders as a potential treatment. Proposed amyloid disaggregation mechanism of an ATP-independent chaperone (L-PGDS).
Introduction Protein aggregation and deposition of uniformly arranged amyloid fibrils in the form of plaques or amorphous aggregates is characteristic of amyloid diseases. The accumulation and deposition of proteins result in toxicity and cause deleterious effects on affected individuals known as amyloidosis. There are about fifty different proteins and peptides involved in amyloidosis including neurodegenerative diseases and diseases affecting vital organs. Despite the strenuous effort to find a suitable treatment option for these amyloid disorders, very few compounds had made it to unsuccessful clinical trials. It has become a compelling challenge to understand and manage amyloidosis with the increased life expectancy and ageing population. Objective While most of the currently available literature and knowledge base focus on the amyloid inhibitory mechanism as a treatment option, it is equally important to organize and understand amyloid disaggregation strategies. Disaggregation strategies are important and crucial as they are present innately functional in many living systems and dissolution of preformed amyloids may provide a direct benefit in many pathological conditions. In this review, we have compiled the known amyloid disaggregation mechanism, interactions, and possibilities of using disaggregases as a treatment option for amyloidosis. Methods We have provided the structural details using protein-ligand docking models to visualize the interaction between these disaggregases with amyloid fibrils and their respective proposed amyloid disaggregation mechanisms. Results After reviewing and comparing the different amyloid disaggregase systems and their proposed mechanisms, we presented two different hypotheses for ATP independent disaggregases using L-PGDS as a model. Conclusion Finally, we have highlighted the importance of understanding the underlying disaggregation mechanisms used by these chaperones and organic compounds before the implementation of these disaggregases as a potential treatment option for amyloidosis.
Collapse
|
7
|
Choudhary S, Lopus M, Hosur RV. Targeting disorders in unstructured and structured proteins in various diseases. Biophys Chem 2021; 281:106742. [PMID: 34922214 DOI: 10.1016/j.bpc.2021.106742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are proteins and protein segments that usually do not acquire well-defined folded structures even under physiological conditions. They are abundantly present and challenge the "one sequence-one structure-one function" theory due to a lack of stable secondary and/or tertiary structure. Due to conformational flexibility, IDPs/IDPRs can bind with multiple interacting partners with high-specificity and low-affinity and perform essential biological functions associated with signalling, recognition and regulation. Mis-functioning and mis-regulation of IDPs and IDPRs causes disorder in disordered proteins and disordered protein segments which results in numerous human diseases, such as cancer, Parkinson's disease (PD), Alzheimer's disease (AD), diabetes, metabolic disorders, systemic disorders and so on. Due to the strong connection of IDPs/IDPRs with human diseases they are considered potentential targets for drug therapy. Since they disobey the "one sequence-one structure-one function" concept, IDPs/IDPRs are complex systems for drug targeting. This review summarises various protein disorder diseases and different methods for therapeutic targeting of disordered proteins/segments. Targeting IDPs/IDPRs for diseases will open up a new era of rational drug design and drug discovery.
Collapse
Affiliation(s)
- Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Manu Lopus
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidhyanagri Campus, Kalina, Mumbai 400098, India.
| |
Collapse
|
8
|
Mohammadi S, Khajeh K, Taghdir M, Ranjbar B. An experimental investigation on the influence of various buffer concentrations, osmolytes and gold nanoparticles on lysozyme: Spectroscopic and calorimetric study. Int J Biol Macromol 2021; 172:162-169. [PMID: 33412205 DOI: 10.1016/j.ijbiomac.2020.12.208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/27/2022]
Abstract
Considering importance and several industrial applications of lysozyme, including natural antibiotic and preservative, identifier for the diagnosis of diseases, and extraction purposes, its reversibility and stability studies can be very important. In this paper, the role that buffer and osmolytes concentrations play on the thermodynamic stability of lysozyme denaturation process, that is a new simple and inexpensive method, was evaluated by Nano-DSC III, far- and near-UV CD and fluorescence techniques. In thermal denaturation study, RI and ΔG of protein increased from 25.62% to 58.82% and 48.87 to 63.63 kJ mol-1 with the increment of buffer and osmolytes concentrations, respectively. These changes showed a significant increase of 129.59% in RI and 28.16% in ΔG. The effect of buffer and osmolytes concentrations on the secondary and tertiary structures of protein was also investigated. The results indicated that increment of buffer and osmolytes concentrations increase rigidity and thermodynamic stability of protein. Also, structure of protein may be changed by its interaction with GNPs. Hence, interaction of lysozyme with GNPs was studied at the buffer and osmolytes concentrations that gives the maximum RI and ΔG, respectively. The results showed that molten globule-like state was formed by lysozyme in the presence of GNPs.
Collapse
Affiliation(s)
- Soraya Mohammadi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
9
|
Sakaguchi T, Wada T, Kasai T, Shiratori T, Minami Y, Shimada Y, Otsuka Y, Komatsu K, Goto S. Effects of ionic and reductive atmosphere on the conformational rearrangement in hen egg white lysozyme prior to amyloid formation. Colloids Surf B Biointerfaces 2020; 190:110845. [DOI: 10.1016/j.colsurfb.2020.110845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
|
10
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
11
|
Furkan M, Siddiqi MK, Zakariya SM, Khan FI, Hassan MI, Khan RH. An In Vitro elucidation of the antiaggregatory potential of Diosminover thermally induced unfolding of hen egg white lysozyme; A preventive quest for lysozyme amyloidosis. Int J Biol Macromol 2019; 129:1015-1023. [DOI: 10.1016/j.ijbiomac.2019.02.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/24/2023]
|
12
|
Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson's disease. Br J Pharmacol 2019; 176:1173-1189. [PMID: 30767205 PMCID: PMC6468260 DOI: 10.1111/bph.14623] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement disorder resulting primarily from loss of nigrostriatal dopaminergic neurons. PD is characterized by the accumulation of protein aggregates, and evidence suggests that aberrant protein deposition in dopaminergic neurons could be related to the dysregulation of the lysosomal autophagy pathway. The therapeutic potential of autophagy modulators has been reported in experimental models of PD. Trehalose is a natural disaccharide that has been considered as a new candidate for the treatment of neurodegenerative diseases. It has a chaperone-like activity, prevents protein misfolding or aggregation, and by promoting autophagy, contributes to the removal of accumulated proteins. In this review, we briefly summarize the role of aberrant autophagy in PD and the underlying mechanisms that lead to the development of this disease. We also discuss reports that used trehalose to counteract the neurotoxicity in PD, focusing particularly on the autophagy promoting, protein stabilization, and anti-neuroinflammatory effects of trehalose.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
- Instituto de Ciencias BiomédicasUniversidad Autónoma de ChileSantiagoChile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- School of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
13
|
Proline functionalized gold nanoparticles modulates lysozyme fibrillation. Colloids Surf B Biointerfaces 2019; 174:401-408. [PMID: 30476794 DOI: 10.1016/j.colsurfb.2018.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022]
|
14
|
Ulicna K, Bednarikova Z, Hsu WT, Holztragerova M, Wu JW, Hamulakova S, Wang SSS, Gazova Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf B Biointerfaces 2018; 166:108-118. [DOI: 10.1016/j.colsurfb.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|