1
|
X M. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2025; 100:362-406. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- Maggs X
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Tankrathok A, Mahong B, Roytrakul S, Daduang S, Temsiripong Y, Klaynongsruang S, Jangpromma N. Proteomic analysis of crocodile white blood cells reveals insights into the mechanism of the innate immune system. Heliyon 2024; 10:e24583. [PMID: 38312682 PMCID: PMC10835162 DOI: 10.1016/j.heliyon.2024.e24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Crocodiles have a particularly powerful innate immune system because their blood contains high levels of antimicrobial peptides. They can survive injuries that would be fatal to other animals, and they are rarely afflicted with diseases. To better understand the crocodile's innate immune response, proteomic analysis was performed on the white blood cells (WBC) of an Aeromonas hydrophila-infected crocodile. Levels of WBC and red blood cells (RBC) rapidly increased within 1 h. In WBC, there were 109 up-regulated differentially expressed proteins (DEP) that were up-regulated. Fifty-nine DEPs dramatically increased expression from 1 h after inoculation, whereas 50 up-regulated DEPs rose after 24 h. The most abundant DEPs mainly had two biological functions, 1) gene expression regulators, for example, zinc finger proteins and histone H1 family, and 2) cell mechanical forces such as actin cytoskeleton proteins and microtubule-binding proteins. This finding illustrates the characteristic effective innate immune response mechanism of crocodiles that might occur via boosted transcription machinery proteins to accelerate cytoskeletal protein production for induction of phagocytosis, along with the increment of trafficking proteins to transport essential molecules for combating pathogens. The findings of this study provide new insights into the mechanisms of the crocodile's innate immune system.
Collapse
Affiliation(s)
- Anupong Tankrathok
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, 46000, Thailand
| | - Bancha Mahong
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sittiruk Roytrakul
- Proteomics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
3
|
Le Roy N, Stapane L, Gautron J, Hincke MT. Evolution of the Avian Eggshell Biomineralization Protein Toolkit - New Insights From Multi-Omics. Front Genet 2021; 12:672433. [PMID: 34046059 PMCID: PMC8144736 DOI: 10.3389/fgene.2021.672433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The avian eggshell is a remarkable biomineral, which is essential for avian reproduction; its properties permit embryonic development in the desiccating terrestrial environment, and moreover, are critically important to preserve unfertilized egg quality for human consumption. This calcium carbonate (CaCO3) bioceramic is made of 95% calcite and 3.5% organic matrix; it protects the egg contents against microbial penetration and mechanical damage, allows gaseous exchange, and provides calcium for development of the embryonic skeleton. In vertebrates, eggshell occurs in the Sauropsida and in a lesser extent in Mammalia taxa; avian eggshell calcification is one of the fastest known CaCO3 biomineralization processes, and results in a material with excellent mechanical properties. Thus, its study has triggered a strong interest from the researcher community. The investigation of eggshell biomineralization in birds over the past decades has led to detailed characterization of its protein and mineral constituents. Recently, our understanding of this process has been significantly improved using high-throughput technologies (i.e., proteomics, transcriptomics, genomics, and bioinformatics). Presently, more or less complete eggshell proteomes are available for nine birds, and therefore, key proteins that comprise the eggshell biomineralization toolkit are beginning to be identified. In this article, we review current knowledge on organic matrix components from calcified eggshell. We use these data to analyze the evolution of selected matrix proteins and underline their role in the biological toolkit required for eggshell calcification in avian species. Amongst the panel of eggshell-associated proteins, key functional domains are present such as calcium-binding, vesicle-binding and protein-binding. These technical advances, combined with progress in mineral ultrastructure analyses, have opened the way for new hypotheses of mineral nucleation and crystal growth in formation of the avian eggshell, including transfer of amorphous CaCO3 in vesicles from uterine cells to the eggshell mineralization site. The enrichment of multi-omics datasets for bird species is critical to understand the evolutionary context for development of CaCO3 biomineralization in metazoans, leading to the acquisition of the robust eggshell in birds (and formerly dinosaurs).
Collapse
Affiliation(s)
| | | | | | - Maxwell T Hincke
- Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Piazza MV, Fernández MS, Leiva PML, Piña CI, Simoncini MS. "Intracascaral space" an eggshell structure of Caiman latirostris eggs. Sci Rep 2021; 11:5579. [PMID: 33692431 PMCID: PMC7970913 DOI: 10.1038/s41598-021-85113-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
In recent decades, eggshells of eggs from large-bodied reptiles have been studied by many researchers, to describe the eggshell, to compare them to extinct lineages that once inhabited our planet and also to understand how the egg provides the embryo specific conditions during incubation. In previous studies we described and characterized normal and pathologic Caiman latirostris eggshells; we also evaluated how the eggshell changes during incubation. In a study relating temperature variation and eggshell structures of successful eggs, we observed empty structures not previously described that we termed “intracascaral space”. The aim of this study is to describe this structure of C. latirostris eggshells. We hypothesize about the possible functions which it would perform during incubation and for development of the embryos.
Collapse
Affiliation(s)
- Mila V Piazza
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino C.C. 14, Zavalla, Santa Fe, Argentina
| | - Mariela S Fernández
- Instituto de Investigaciones en Biodiversidad y Medioambiente-Consejo Nacional de Investigaciones Científicas y Técnicas, Quintral 1250, 8300, Bariloche, Río Negro, Argentina.
| | - Pamela M L Leiva
- Centro de Investigación Científica y de Transferencia Tecnológica a la Producción-Consejo Nacional de Investigaciones Científicas y Técnicas, España 149, 3105, Diamante, Entre Ríos, Argentina.,Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (Facultad de Humanidades y Ciencias - Universidad de Nacional del Litoral / Ministerio de Aguas, Servicios Públicos y Medio Ambiente), Aristóbulo del Valle 8700, 3000, Santa Fe, Santa Fe, Argentina.,Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Tratado del Pilar 314, 3105, Diamante, Entre Ríos, Argentina
| | - Carlos I Piña
- Centro de Investigación Científica y de Transferencia Tecnológica a la Producción-Consejo Nacional de Investigaciones Científicas y Técnicas, España 149, 3105, Diamante, Entre Ríos, Argentina.,Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (Facultad de Humanidades y Ciencias - Universidad de Nacional del Litoral / Ministerio de Aguas, Servicios Públicos y Medio Ambiente), Aristóbulo del Valle 8700, 3000, Santa Fe, Santa Fe, Argentina.,Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Tratado del Pilar 314, 3105, Diamante, Entre Ríos, Argentina
| | - Melina S Simoncini
- Centro de Investigación Científica y de Transferencia Tecnológica a la Producción-Consejo Nacional de Investigaciones Científicas y Técnicas, España 149, 3105, Diamante, Entre Ríos, Argentina. .,Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (Facultad de Humanidades y Ciencias - Universidad de Nacional del Litoral / Ministerio de Aguas, Servicios Públicos y Medio Ambiente), Aristóbulo del Valle 8700, 3000, Santa Fe, Santa Fe, Argentina. .,Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Tratado del Pilar 314, 3105, Diamante, Entre Ríos, Argentina.
| |
Collapse
|
5
|
Kulhavá L, Eckhardt A, Pataridis S, Foltán R, Mikšík I. Proteomic Analysis of Whole Saliva in Relation to Dental Caries Resistance. Folia Biol (Praha) 2020; 66:72-80. [PMID: 32851837 DOI: 10.14712/fb2020066020072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Saliva contains possible biomarkers that are associated with dental caries. The present study aimed to analyse differences in the abundance of proteins in the saliva between caries-positive (CP; N = 15) and caries-free (CF; N = 12) males and to compare differences in the abundance of proteins between two saliva sample fractions (supernatant and pellet). We found 14 differently significantly expressed proteins in the CF group when comparing the supernatant fractions of the CP and CF groups, and three proteins in the pellet fractions had significantly higher expression in the CP group. Our results indicate very specific protein compositions of the saliva in relation to dental caries resistance (the saliva of the CP group mainly contained pellet proteins and the saliva of the CF group mainly contained supernatant proteins). This was the first time that the saliva pellet fraction was analysed in relation to the dental caries status. We detected specific calcium-binding proteins that could have decalcified enamel in the saliva pellet of the CP group. We also observed significantly up-regulated immune proteins in the saliva supernatant of the CF group that could play an important role in the caries prevention. The particular protein compositions of the saliva pellet and supernatant in the groups with different susceptibilities to tooth decay is a promising finding for future research.
Collapse
Affiliation(s)
- L Kulhavá
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - A Eckhardt
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - S Pataridis
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - R Foltán
- Department of Stomatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - I Mikšík
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Guinea fowl eggshell quantitative proteomics yield new findings related to its unique structural characteristics and superior mechanical properties. J Proteomics 2019; 209:103511. [PMID: 31493547 DOI: 10.1016/j.jprot.2019.103511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/13/2023]
Abstract
The Guinea fowl eggshell is a bioceramic material with the remarkable mechanical property of being twice as strong as the chicken eggshell. Both eggshells are composed of 95% calcite and 3.5% organic matrix, which control its structural organization. Chicken eggshell is made of columnar calcite crystals arranged vertically. In the Guinea fowl, the same structure is observed in its inner half, followed by a dramatic change in crystal size and orientation in the outer region. Guinea fowl eggshell is thicker than chicken eggshell. Both structure and shell thickness confer a superior resistance to breakage compared to eggshells of other bird species. To understand the underlying mechanisms controlling the structural organization of this highly resistant material, we used quantitative proteomics to analyze the protein composition of the Guinea fowl eggshell organic matrix at key stages of the biomineralization process. We identified 149 proteins, which were compared to other bird eggshell proteomes and analyzed their potential functions. Among the 149 proteins, 9 are unique to Guinea fowl, some are involved in the control of the calcite precipitation (Lysozyme, Ovocleidin-17-like, Ovocleidin-116 and Ovalbumin), 61 are only found in the zone of microstructure shift and 17 are more abundant in this zone. SIGNIFICANCE: The avian eggshell is a critical physical barrier to protect the contents of this autonomous reproductive enclosure from physical and microbial assault. The Guinea fowl (Numida meleagris) eggshell exhibits a unique microstructure (texture), which confers exceptional mechanical properties compared to eggshells of other species. In order to understand the mechanisms that regulate formation of this texture in the Guinea fowl eggshell, we performed comparative quantitative proteomics at key stages of shell mineralization and particularly during the dramatic shift in shell microstructure. We demonstrate that the Guinea fowl eggshell proteome comprises 149 proteins, of which 61 were specifically associated with the change in size and orientation of calcite crystals. Comparative proteomics analysis with eggshell of other bird species leads to new insights into the biomineralization process. Moreover, our data represents a list of organic compounds as potential additives to regulate material design for industrial fabrication of ceramics. This information also provides molecular markers for efficient genomic selection of chicken strains to lay eggs with improved shell mechanical properties for enhanced food safety.
Collapse
|
7
|
Shawkey MD, D’Alba L. Egg pigmentation probably has an early Archosaurian origin. Nature 2019; 570:E43-E45. [DOI: 10.1038/s41586-019-1282-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 11/09/2022]
|
8
|
Wiemann J, Yang TR, Norell MA. Reply to: Egg pigmentation probably has an Archosaurian origin. Nature 2019; 570:E46-E50. [DOI: 10.1038/s41586-019-1283-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 03/25/2019] [Indexed: 11/09/2022]
|