1
|
Fan X, Gu C, Shen L, Gao Z, Yang X, Bian Y, Wang F, Jiang X. Theoretical insights into the binding of mono/di-ethyl phthalates to superoxide dismutase and associated structural changes impairing antioxidant activity: A coupled molecular docking and dynamics simulation approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179667. [PMID: 40394786 DOI: 10.1016/j.scitotenv.2025.179667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/24/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
Phthalic acid esters (PAEs) are plasticizers known to increase oxidative stress by impairing antioxidant defenses, including superoxide dismutase (SOD) activity. Since oxidative stress plays a critical role in disease development, the disruption of SOD function by PAEs presents a significant concern. However, the precise molecular mechanisms underlying the regulation of SOD activity remain unclear. This study investigated how diethyl phthalate (DEP) and its major metabolite, monoethyl phthalate (MEP), affected SOD activity using molecular docking and dynamics simulations. The results revealed that both DEP and MEP bound to SOD through weak hydrophilic interactions and hydrogen bonds with residues Lys9, Thr17, Asn51, Thr52, and Arg141 in the bottom of the enzyme's two subunit cavities. These interactions triggered structural changes, particularly in the electrostatic loop and catalytic channels, destabilizing SOD. DEP and MEP increased the enzyme's radius of gyration and solvent-accessible surface area while disrupting intra-protein interactions. MEP showed a stronger inhibitory effect, significantly altering SOD's conformation. This change correlated with reduced catalytic activity (R2 > 0.9). Consequently, the inhibition of the enzyme is primarily due to the disruption of Arg141's conformation and function, which weakens SOD's antioxidant defense and potentially contributes to diseases related to oxidative damage. These results underscore the health risks posed by PAEs, especially following metabolic transformation, and highlight the importance of addressing their oxidative impact.
Collapse
Affiliation(s)
- Xiuli Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lezu Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhengyuan Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinglun Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Hosseini Faradonbeh SM, Seyedalipour B, Keivan Behjou N, Rezaei K, Baziyar P, Hosseinkhani S. Structural insights into SOD1: from in silico and molecular dynamics to experimental analyses of ALS-associated E49K and R115G mutants. Front Mol Biosci 2025; 12:1532375. [PMID: 40070688 PMCID: PMC11893412 DOI: 10.3389/fmolb.2025.1532375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025] Open
Abstract
Protein stability is a crucial characteristic that influences both protein activity and structure and plays a significant role in several diseases. Cu/Zn superoxide dismutase 1 (SOD1) mutations serve as a model for elucidating the destabilizing effects on protein folding and misfolding linked to the lethal neurological disease, amyotrophic lateral sclerosis (ALS). In the present study, we have examined the structure and dynamics of the SOD1 protein upon two ALS-associated point mutations at the surface (namely, E49K and R115G), which are located in metal-binding loop IV and Greek key loop VI, respectively. Our analysis was performed through multiple algorithms on the structural characterization of the hSOD1 protein using computational predictions, molecular dynamics (MD) simulations, and experimental studies to understand the effects of amino acid substitutions. Predictive results of computational analysis predicted the deleterious and destabilizing effect of mutants on hSOD1 function and stability. MD outcomes also indicate that the mutations result in structural destabilization by affecting the increased content of β-sheet structures and loss of hydrogen bonds. Moreover, comparative intrinsic and extrinsic fluorescence results of WT-hSOD1 and mutants indicated structural alterations and increased hydrophobic surface pockets, respectively. As well, the existence of β-sheet-dominated structures was observed under amyloidogenic conditions using FTIR spectroscopy. Overall, our findings suggest that mutations in the metal-binding loop IV and Greek key loop VI lead to significant structural and conformational changes that could affect the structure and stability of the hSOD1 molecule, resulting in the formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Nasrin Keivan Behjou
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Kimiya Rezaei
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Reda D, Elfiky AA, Elnagdy M, Khalil MM. Molecular docking and molecular dynamics of hypoxia-inducible factor (HIF-1alpha): towards potential inhibitors. J Biomol Struct Dyn 2024:1-20. [PMID: 39520676 DOI: 10.1080/07391102.2024.2425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/18/2024] [Indexed: 11/16/2024]
Abstract
HIF-1α is a primary regulator in the adaptation of cancer cells to hypoxia. The aim was to find out new inhibitors of the HIF-1α. A molecular dynamic (MD) simulation performed on HIF-1α showed stable dynamic features. Virtual screening of 217 anticancer drugs was performed along with a positive control (2-Methoxyestradiolm, 2-ME2) on an optimized HIF-1α and dynamically simulated structure. Docking results produced two compounds namely pycnidione and nilotinib of high binding affinity -9.34 kcal/mol and -9.04 kcal/mol respectively, whereas 2-ME2 displayed a relatively lower affinity (-6.68 kcal/mol). For the three complexes, MD of 200 ns simulation was run. Data analysis showed that the three medications behaved similarly in the MD simulation. Nilotinib had a lower RMSD and higher SASA than the other complexes. In addition, the Nilotinib-HIF-1α combination had a lower RMSF value, a flatter Rg, and a number of hydrogen bonds similar to other complexes. MM-GBSA analysis revealed that nilotinib, pycnidione and 2-ME2 compounds had free binding energy of -23.77 ± 5.29, -21.85 ± 4.24 and -7.53 ± 6.62 kcal/mol respectively. Nilotinib and pycnidione bind competitively to HIF-1α, with nilotinib showing consistent molecular-dynamic properties. They relatively pass the blood-brain barrier, non-carcinogenic, and have IV-category acute oral toxicity. They have low CYP inhibitory characteristics. Further investigations are therefore warranted to elucidate their implications in hypoxia pathways, cell proliferation, apoptosis, survival, and metastatic potential.
Collapse
Affiliation(s)
- Dina Reda
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - M Elnagdy
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Magdy M Khalil
- School of Allied Health Sciences, Badr University in Cairo (BUC), Badr City and Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Mavadat E, Seyedalipour B, Hosseinkhani S, Colagar AH. Role of charged residues of the "electrostatic loop" of hSOD1 in promotion of aggregation: Implications for the mechanism of ALS-associated mutations under amyloidogenic conditions. Int J Biol Macromol 2023:125289. [PMID: 37307969 DOI: 10.1016/j.ijbiomac.2023.125289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Protein misfolding and amyloid formation are hallmarks of numerous diseases, including amyotrophic lateral sclerosis (ALS), in which hSOD1 aggregation is involved in pathogenesis. We used two point mutations in the electrostatic loop, G138E and T137R, to analyze charge distribution under destabilizing circumstances to gain more about how ALS-linked mutations affect SOD1 protein stability or net repulsive charge. We show that protein charge is important in the ALS disease process using bioinformatics and experiments. The MD simulation findings demonstrate that the mutant protein differs significantly from WT SOD1, which is consistent with the experimental evidence. The specific activity of the wild type was 1.61 and 1.48 times higher than that of the G138E and T137R mutants, respectively. Under amyloid induction conditions, the intensity of intrinsic and ANS fluorescence in both mutants reduced. Increasing the content of β-sheet structures in mutants can be attributed to aggregation propensity, which was confirmed using CD polarimetry and FTIR spectroscopy. Our findings show that two ALS-related mutations promote the formation of amyloid-like aggregates at near physiological pH under destabilizing conditions, which were detected using spectroscopic probes such as Congo red and ThT fluorescence, and also further confirmation of amyloid-like species by TEM. Overall, our results provide evidence supporting the notion that negative charge changes combined with other destabilizing factors play an important role in increasing protein aggregation by reducing repulsive negative charges.
Collapse
Affiliation(s)
- Elaheh Mavadat
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
5
|
Rahman A, Saikia B, Gogoi CR, Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:31-48. [PMID: 36044970 DOI: 10.1016/j.pbiomolbio.2022.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aberrant protein folding known as protein misfolding is counted as one of the striking factors of neurodegenerative diseases. The extensive range of pathologies caused by protein misfolding, aggregation and subsequent accumulation are mainly classified into either gain of function diseases or loss of function diseases. In order to seek for novel strategies for treatment and diagnosis of neurodegenerative diseases, insights into the mechanism of misfolding and aggregation is essential. A comprehensive knowledge on the factors influencing misfolding and aggregation is required as well. An extensive experimental study on protein aggregation is somewhat challenging due to the insoluble and noncrystalline nature of amyloid fibrils. Thus there has been a growing use of computational approaches including Monte Carlo simulation, docking simulation, molecular dynamics simulation in the study of protein misfolding and aggregation. The review presents a discussion on molecular dynamics simulation alone as to how it has emerged as a promising tool in the understanding of protein misfolding and aggregation in general, detailing upon three different aspects considering four misfold prone proteins in particular. It is noticeable that all four proteins considered in this review i.e prion, superoxide dismutase1, huntingtin and amyloid β are linked to chronic neurodegenerative diseases with debilitating effects. Initially the review elaborates on the factors influencing the misfolding and aggregation. Next, it addresses our current understanding of the amyloid structures and the associated aggregation mechanisms, finally, summarizing the contribution of this computational tool in the search for therapeutic strategies against the respective protein-deposition diseases.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Chimi Rekha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
6
|
Perciballi E, Bovio F, Rosati J, Arrigoni F, D’Anzi A, Lattante S, Gelati M, De Marchi F, Lombardi I, Ruotolo G, Forcella M, Mazzini L, D’Alfonso S, Corrado L, Sabatelli M, Conte A, De Gioia L, Martino S, Vescovi AL, Fusi P, Ferrari D. Characterization of the p.L145F and p.S135N Mutations in SOD1: Impact on the Metabolism of Fibroblasts Derived from Amyotrophic Lateral Sclerosis Patients. Antioxidants (Basel) 2022; 11:antiox11050815. [PMID: 35624679 PMCID: PMC9137766 DOI: 10.3390/antiox11050815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of the upper and lower motor neurons (MNs). About 10% of patients have a family history (familial, fALS); however, most patients seem to develop the sporadic form of the disease (sALS). SOD1 (Cu/Zn superoxide dismutase-1) is the first studied gene among the ones related to ALS. Mutant SOD1 can adopt multiple misfolded conformation, lose the correct coordination of metal binding, decrease structural stability, and form aggregates. For all these reasons, it is complicated to characterize the conformational alterations of the ALS-associated mutant SOD1, and how they relate to toxicity. In this work, we performed a multilayered study on fibroblasts derived from two ALS patients, namely SOD1L145F and SOD1S135N, carrying the p.L145F and the p.S135N missense variants, respectively. The patients showed diverse symptoms and disease progression in accordance with our bioinformatic analysis, which predicted the different effects of the two mutations in terms of protein structure. Interestingly, both mutations had an effect on the fibroblast energy metabolisms. However, while the SOD1L145F fibroblasts still relied more on oxidative phosphorylation, the SOD1S135N fibroblasts showed a metabolic shift toward glycolysis. Our study suggests that SOD1 mutations might lead to alterations in the energy metabolism.
Collapse
Affiliation(s)
- Elisa Perciballi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
| | - Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.D.); (G.R.)
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
| | - Angela D’Anzi
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.D.); (G.R.)
| | - Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy;
- Unit of Medical Genetics, Department of Laboratory and Infectious Disease Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Maurizio Gelati
- UPTA Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy;
| | - Fabiola De Marchi
- ALS Centre Maggiore della Carità Hospital and Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (L.M.)
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
| | - Giorgia Ruotolo
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy; (J.R.); (A.D.); (G.R.)
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
| | - Letizia Mazzini
- ALS Centre Maggiore della Carità Hospital and Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (L.M.)
| | - Sandra D’Alfonso
- Department of Health Sciences, Center on Autoimmune and Allergic Diseases (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy; (S.D.); (L.C.)
| | - Lucia Corrado
- Department of Health Sciences, Center on Autoimmune and Allergic Diseases (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy; (S.D.); (L.C.)
| | - Mario Sabatelli
- Adult NEMO Clinical Center, Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.S.); (A.C.)
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Amelia Conte
- Adult NEMO Clinical Center, Unit of Neurology, Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (M.S.); (A.C.)
- Section of Neurology, Department of Neuroscience, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy;
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
- Correspondence: (P.F.); (D.F.); Tel.: +39-348-004-6641 (D.F.)
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (E.P.); (F.B.); (F.A.); (I.L.); (M.F.); (L.D.G.); (A.L.V.)
- Correspondence: (P.F.); (D.F.); Tel.: +39-348-004-6641 (D.F.)
| |
Collapse
|
7
|
Pereira GRC, Vieira BDAA, De Mesquita JF. Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis. PLoS One 2021; 16:e0247841. [PMID: 33630959 PMCID: PMC7906464 DOI: 10.1371/journal.pone.0247841] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disorder, with a significant social and economic burden. ALS remains incurable, and the only drugs approved for its treatments confers a survival benefit of a few months for the patients. Missense mutations in superoxide dismutase 1 (SOD1), a major cytoplasmic antioxidant enzyme, has been associated with ALS development, accounting for 23% of its familial cases and 7% of all sporadic cases. This work aims to characterize in silico the structural and functional effects of SOD1 protein variants. Missense mutations in SOD1 were compiled from the literature and databases. Twelve algorithms were used to predict the functional and stability effects of these mutations. ConSurf was used to estimate the evolutionary conservation of SOD1 amino-acids. GROMACS was used to perform molecular dynamics (MD) simulations of SOD1 wild-type and variants A4V, D90A, H46R, and I113T, which account for approximately half of all ALS-SOD1 cases in the United States, Europe, Japan, and United Kingdom, respectively. 233 missense mutations in SOD1 protein were compiled from the databases and literature consulted. The predictive analyses pointed to an elevated rate of deleterious and destabilizing predictions for the analyzed variants, indicating their harmful effects. The ConSurf analysis suggested that mutations in SOD1 mainly affect conserved and possibly functionally essential amino acids. The MD analyses pointed to flexibility and essential dynamics alterations at the electrostatic and metal-binding loops of variants A4V, D90A, H46R, and I113T that could lead to aberrant interactions triggering toxic protein aggregation. These alterations may have harmful implications for SOD1 and explain their association with ALS. Understanding the effects of SOD1 mutations on protein structure and function facilitates the design of further experiments and provides relevant information on the molecular mechanism of pathology, which may contribute to improvements in existing treatments for ALS.
Collapse
Affiliation(s)
- Gabriel Rodrigues Coutinho Pereira
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Joelma Freire De Mesquita
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
8
|
Xia Y, Chen Z, Xu G, Borchelt DR, Ayers JI, Giasson BI. Novel SOD1 monoclonal antibodies against the electrostatic loop preferentially detect misfolded SOD1 aggregates. Neurosci Lett 2020; 742:135553. [PMID: 33346076 DOI: 10.1016/j.neulet.2020.135553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease that leads to motor neuron degeneration and paralysis. Superoxide dismutase (SOD1) mutations are the second most common cause of familial ALS and are responsible for up to 20 % of familial ALS cases. In ALS patients, SOD1 can form toxic misfolded aggregates that deposit in the brain and spinal cord. To better detect SOD1 aggregates and expand the repertoire of conformational SOD1 antibodies, SOD1 monoclonal antibodies were generated by immunizing SOD1 knockout mice with an SOD1 fragment consisting of amino acids 129-146, which make up part of the electrostatic loop. A series of hybridomas secreting antibodies were screened and five different SOD1 monoclonal antibodies (2C10, 2F8, 4B11, 5H5, and 5A10) were found to preferentially detect denatured or aggregated SOD1 by enzyme-linked immunosorbent assay (ELISA), filter trap assay, and immunohistochemical analysis in SOD1 mouse models. The staining with these antibodies was compared to Campbell-Switzer argyrophilic reactivity of pathological inclusions. These new conformational selective SOD1 antibodies will be useful for clinical diagnosis of SOD1 ALS and potentially for passive immunotherapy.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhijuan Chen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - David R Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jacob I Ayers
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
Singh A, Thakur M, Singh SK, Sharma LK, Chandra K. Exploring the effect of nsSNPs in human YPEL3 gene in cellular senescence. Sci Rep 2020; 10:15301. [PMID: 32943700 PMCID: PMC7498449 DOI: 10.1038/s41598-020-72333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
YPEL3 that induces cellular senescence in both normal and tumour cells of humans may show altered expression under the influence of incidental mutations. In this study, we proposed the first structure of Native YPEL3 protein and its five possible deleterious mutants—V40M, C61Y, G98R, G108S, and A131T and predicted their deleterious effects to alter stability, flexibility and conformational changes in the protein. The MD simulation (RMSD, RMSF, Rg, h-bond and SASA) analysis revealed that the variants V40M, G98R and G108S increased the flexibility in protein, and variant V40M imparted more compactness to the protein.. In general, variants attributed changes in the native conformation and structure of the YPEL3 protein which might affect the native function of cellular senescence. The study provides opportunities for health professionals and practitioners in formulating précised medicines to effectively cure various cancers. We propose in-vitro or in-vivo studies should consider these reported nsSNPs while examining any malfunction in the YPEL3 protein.
Collapse
Affiliation(s)
- Abhishek Singh
- Zoological Survey of India, New Alipore, Kolkata, 700053, India.
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata, 700053, India.
| | | | | | - Kailash Chandra
- Zoological Survey of India, New Alipore, Kolkata, 700053, India
| |
Collapse
|
10
|
Chowdhury S, Sanyal D, Sen S, Uversky VN, Maulik U, Chattopadhyay K. Evolutionary Analyses of Sequence and Structure Space Unravel the Structural Facets of SOD1. Biomolecules 2019; 9:E826. [PMID: 31817166 PMCID: PMC6995586 DOI: 10.3390/biom9120826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 01/08/2023] Open
Abstract
Superoxide dismutase (SOD) is the primary enzyme of the cellular antioxidant defense cascade. Misfolding, concomitant oligomerization, and higher order aggregation of human cytosolic SOD are linked to amyotrophic lateral sclerosis (ALS). Although, with two metal ion cofactors SOD1 is extremely robust, the de-metallated apo form is intrinsically disordered. Since the rise of oxygen-based metabolism and antioxidant defense systems are evolutionary coupled, SOD is an interesting protein with a deep evolutionary history. We deployed statistical analysis of sequence space to decode evolutionarily co-varying residues in this protein. These were validated by applying graph theoretical modelling to understand the impact of the presence of metal ion co-factors in dictating the disordered (apo) to hidden disordered (wild-type SOD1) transition. Contact maps were generated for different variants, and the selected significant residues were mapped on separate structure networks. Sequence space analysis coupled with structure networks helped us to map the evolutionarily coupled co-varying patches in the SOD1 and its metal-depleted variants. In addition, using structure network analysis, the residues with a major impact on the internal dynamics of the protein structure were investigated. Our results reveal that the bulk of these evolutionarily co-varying residues are localized in the loop regions and positioned differentially depending upon the metal residence and concomitant steric restrictions of the loops.
Collapse
Affiliation(s)
- Sourav Chowdhury
- Protein Folding and Dynamics Group, Structural Biology and Bio-informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Kolkata 700032, India; (S.C.); (D.S.)
- Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Dwipanjan Sanyal
- Protein Folding and Dynamics Group, Structural Biology and Bio-informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Kolkata 700032, India; (S.C.); (D.S.)
| | - Sagnik Sen
- Department of Computer Science, Jadavpur University, Kolkata 700032, India; (S.S.); (U.M.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA;
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Ujjwal Maulik
- Department of Computer Science, Jadavpur University, Kolkata 700032, India; (S.S.); (U.M.)
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Group, Structural Biology and Bio-informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Kolkata 700032, India; (S.C.); (D.S.)
| |
Collapse
|
11
|
Roy U. Structure and Function of an Inflammatory Cytokine, Interleukin-2, Analyzed Using the Bioinformatic Approach. Protein J 2019; 38:525-536. [PMID: 31006082 DOI: 10.1007/s10930-019-09833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inflammatory cytokine, interleukin-2 (IL-2), is an important regulator of cellular functions. This relatively less studied member of the interleukin protein family is responsible for multiple immuno-modulatory and immuno-stimulatory tasks, like T cell activation, triggering of natural killer cells, inflammation, as well as proliferation and progression of autoimmune diseases and cancers. In this communication we report the temporally variant structural aspects of the IL-2 ligand and its receptor interfaces, based on the available crystal structures. The intended goal of this effort is to generate simulated results that could potentially aid the designs of novel structure based therapeutics.
Collapse
Affiliation(s)
- Urmi Roy
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5820, USA.
| |
Collapse
|