1
|
Yuan Y, Gao H, Jiang S, You Q, Zhou J, Chen J. Magnetic resonance imaging contrast agents based on albumin nanoparticles. Biomater Sci 2025; 13:408-421. [PMID: 39663837 DOI: 10.1039/d4bm01226g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Despite the potential safety hazards and side effects, small molecular magnetic resonance imaging (MRI) contrast agents have been generally used in clinical medical imaging. The development of stable, but low-toxicity and high-efficiency magnetic resonance contrast agents has been receiving continuous attention and research interest. With the deepening of studies, the combination of small molecular magnetic resonance contrast agents and albumin-based carriers is an effective strategy to obtain new MRI contrast agents with safety, low toxicity, high relaxation efficiency and targeting capability. In particular, the relaxivity values of some albumin-based nano-magnetic resonance contrast agents are greater than 100 mM-1 s-1, which is much higher than the relaxivity values of some small molecule MRI contrast agents. Therefore, herein, current research on albumin nanoparticle related MRI contrast agents is summarized, which is of great significance for clarifying the development direction of contrast agents.
Collapse
Affiliation(s)
- Yuan Yuan
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Hui Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Sunmin Jiang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Qingjun You
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Nayak M, Das RP, Kumbhare LB, Singh BG, Iwaoka M, Kunwar A. Diseleno-albumin, a native bio-inspired drug free therapeutic protein induces apoptosis in lung cancer cells through mitochondrial oxidation. Int J Biol Macromol 2024; 279:135141. [PMID: 39208899 DOI: 10.1016/j.ijbiomac.2024.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Macromolecular therapeutic is the emerging concept in the fields of drug delivery and drug discovery. The present study reports the design and development of a serum albumin based macromolecular chemotherapeutic by conjugating bovine serum albumin (BSA) with 3,3'-diselenodipropionic acid (DSePA), a pharmacologically active organo-diselenide (R-Se-Se-R). The reaction conditions were optimised to achieve the controlled conjugation of BSA with DSePA without causing any significant alteration in its physico-chemical properties or secondary structure and crosslinking. The chemical characterisation of the reaction product through various spectroscopic techniques viz., FT-IR, Raman, XPS, AAS and MALDI-TOF-MS, established the conjugation of about ∼5 DSePA molecules per BSA molecule. The DSePA conjugated BSA (Se-Se-BSA) showed considerable stability in aqueous and lyophilized forms. The cytotoxicity studies by involving cell lines of cancerous and non-cancerous origins indicated that Se-Se-BSA selectively inhibited the proliferation of cancerous cells. The cellular uptake studies by physically labelling Se-Se-BSA with curcumin and following its intracellular fluorescence confirmed that uptake efficiency of Se-Se-BSA was almost similar to that of native BSA. Finally, studies on the mechanism of action of Se-Se-BSA in the A549 (lung adenocarcinoma) cells revealed that it induced mitochondrial ROS generation followed by mitochondrial dysfunction, activation of caspases and apoptosis. Together, these results demonstrate a bio-inspired approach of exploring diselenide (-Se-Se-) grafted serum albumin as the potential drug free therapeutic for anticancer application.
Collapse
Affiliation(s)
- Minati Nayak
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ram Pada Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Michio Iwaoka
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Das RP, Gandhi VV, Verma G, Ajish JK, Singh BG, Kunwar A. Gelatin-lecithin-F127 gel mediated self-assembly of curcumin vesicles for enhanced wound healing. Int J Biol Macromol 2022; 210:403-414. [PMID: 35526768 DOI: 10.1016/j.ijbiomac.2022.04.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/23/2022]
Abstract
Curcumin, a principal component of Curcuma longa, has a long history of being used topically for wound healing. However, poor aqueous solubility of curcumin leads to poor topical absorption. Recently, gelatin based gel has been reported to overcome this issue. However, the release of curcumin from gelatin gel in the bioavailable or easily absorbable form is still a challenge. The present study reports the development of a composite gel prepared from gelatin, F127 and lecithin using temperature dependant gelation and loading of curcumin within it. Notably, the composite gel facilitated the release of curcumin entrapped within vesicles of ~400 nm size. Further, the composite gel exhibited increase in the storage modulus or gel strength, stability, pore size and hydrophobicity as compared to only gelatin gel. Finally, wound healing assay in murine model indicated that curcumin delivered through composite gel showed a significantly faster healing as compared to that delivered through organic solvent. This was also validated by histopathological and biochemical analysis showing better epithelization and collagen synthesis in the group dressed with curcumin containing composite gel. In conclusion, composite gel facilitated the release of bioavailable or easily absorbable curcumin which in turn enhanced the wound healing.
Collapse
Affiliation(s)
- Ram Pada Das
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Vishwa V Gandhi
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Gunjan Verma
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Juby K Ajish
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Amit Kunwar
- Radiation & Photochemistry Division, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes (Basel) 2022. [DOI: 10.3390/pr10061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Currently, nanotechnology is considered a promising strategy to enhance drug solubility and other physicochemical properties. Albumin is a biopolymer that can be used in drug delivery systems due to its biodegradability and biocompatibility. The aim of this study was to prepare and characterize albumin nanoparticles with chlorambucil as a controlled drug delivery system. Different concentrations of chlorambucil were incubated with bovine serum albumin (BSA) in order to prepare nanoparticles using the desolvation method. As a result, nanoparticles in sizes ranging from 199.6 to 382.6 nm exhibiting high encapsulation efficiency of chlorambucil were obtained. A spectroscopic study revealed concentration-dependent changes in secondary structure of the albumin chain and in the hydrophobicity of chlorambucil. Based on the results obtained, it was concluded that the investigated structures may be used in the development of a drug delivery system.
Collapse
|
6
|
Yang HG, Yang E, Park EJ, Lee YJ, Safavi MS, Song K, Na DH. Synthesis and characterization of
β‐carotene‐loaded
albumin nanoparticles by
high‐speed
homogenizer. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hye Gyeong Yang
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
- D&D Pharmatech Seongnam Gyeonggi‐do Republic of Korea
| | - Eun‐Ju Yang
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Eun Ji Park
- D&D Pharmatech Seongnam Gyeonggi‐do Republic of Korea
| | - Young Jin Lee
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Maryam Sadat Safavi
- Biotechnology Group, Faculty of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Kyung‐Sik Song
- College of Pharmacy Kyungpook National University Daegu Republic of Korea
| | - Dong Hee Na
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| |
Collapse
|
7
|
Sohail M, Guo W, Yang X, Li Z, Li Y, Xu H, Zhao F. A Promising Anticancer Agent Dimethoxycurcumin: Aspects of Pharmacokinetics, Efficacy, Mechanism, and Nanoformulation for Drug Delivery. Front Pharmacol 2021; 12:665387. [PMID: 34295247 PMCID: PMC8290316 DOI: 10.3389/fphar.2021.665387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Curcumin is a well-known anticancer natural product with various significant bioactivities that has been well documented, but its widespread use is mainly hindered by insufficient ADME properties such as poor solubility and low metabolic stability. Dimethoxycurcumin (DiMC) is a kind of lipophilic compound derived from curcumin that maintains its anticancer potency and has greatly improved systematic bioavailability. Therefore, DiMC is regarded as a promising plant-derived anticancer agent that deserves to be well developed. Herein, we concentrate on the published work by those from original research groups concerned with the pharmacokinetics, efficacy, and mechanism of DiMC involved in the treatment of various tumors, as well as the nanoformulations for effective drug delivery.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Wenna Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Zhiyong Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China.,Department of Pharmaceutics, Binzhou Hospital of TCM, Binzhou, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University) Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
8
|
Fattah R, Rashedi H, Yazdian F, Mousavi SB, Fazeli A. Promising insights into the kosmotropic effect of magnetic nanoparticles on proteins: The pivotal role of protein corona formation. Biotechnol Prog 2020; 36:e3051. [PMID: 32692433 DOI: 10.1002/btpr.3051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 11/05/2022]
Abstract
Increasing concerns about biosafety of nanoparticles (NPs) has raised the need for detailed knowledge of NP interactions with biological molecules especially proteins. Herein, the concentration-dependent effect of magnetic NPs (MNPs) on bovine serum albumin and hen egg white lysozyme was explored. The X-ray diffraction patterns, zeta potential, and dynamic light scattering measurements together with scanning electron microscopy images were employed to characterize MNPs synthesized through coprecipitation method. Then, we studied the behavior of two model proteins with different surface charges and structural properties on interaction with Fe3 O4 . A thorough investigation of protein-MNP interaction by the help of intrinsic fluorescence at different experimental conditions revealed that affinity of proteins for MNPs is strongly affected by the similarity of protein and MNP surface charges. MNPs exerted structure-making kosmotropic effect on both proteins under a concentration threshold; however, binding strength was found to determine the extent of stabilizing effect as well as magnitude of the concentration threshold. Circular dichroism spectra showed that proteins with less resistance to conformational deformations are more prone to secondary structure changes upon adsorption on MNPs. By screening thermal aggregation of proteins in the presence of Fe3 O4 , it was also found that like chemical stability, thermal stability is influenced to a higher extent in more strongly bound proteins. Overall, this report not only provides an integrated picture of protein-MNP interaction but also sheds light on the molecular mechanism underling this process.
Collapse
Affiliation(s)
- Reza Fattah
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | - Ahmad Fazeli
- Research and Development Department, Zistdaru Danesh Co, Tehran, Iran.,The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|