1
|
Araujo NA, Bubis J. Analysis of a Novel Peptide That Is Capable of Inhibiting the Enzymatic Activity of the Protein Kinase A Catalytic Subunit-Like Protein from Trypanosoma equiperdum. Protein J 2023; 42:709-727. [PMID: 37713008 DOI: 10.1007/s10930-023-10153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
A 26-residue peptide possessing the αN-helix motif of the protein kinase A (PKA) regulatory subunit-like proteins from the Trypanozoom subgenera (VAP26, sequence = VAPYFEKSEDETALILKLLTYNVLFS), was shown to inhibit the enzymatic activity of the Trypanosoma equiperdum PKA catalytic subunit-like protein, in a similar manner that the mammalian heat-stable soluble PKA inhibitor known as PKI. However, VAP26 does not contain the PKI inhibitory sequence. Bioinformatics analyzes of the αN-helix motif from various Trypanozoon PKA regulatory subunit-like proteins suggested that the sequence could form favorable peptide-protein interactions of hydrophobic nature with the PKA catalytic subunit-like protein, which possibly may represent an alternative PKA inhibitory mechanism. The sequence of the αN-helix motif of the Trypanozoon proteins was shown to be highly homologous but significantly divergent from the corresponding αN-helix motifs of their Leishmania and mammalian counterparts. This sequence divergence contrasted with the proposed secondary structure of the αN-helix motif, which appeared conserved in every analyzed regulatory subunit-like protein. In silico mutation experiments at positions I234, L238 and F244 of the αN-helix motif from the Trypanozoon proteins destabilized both the specific motif and the protein. On the contrary, mutations at positions T239 and Y240 stabilized the motif and the protein. These results suggested that the αN-helix motif from the Trypanozoon proteins probably possessed a different evolutionary path than their Leishmania and mammalian counterparts. Moreover, finding stabilizing mutations indicated that new inhibitory peptides may be designed based on the αN-helix motif from the Trypanozoon PKA regulatory subunit-like proteins.
Collapse
Affiliation(s)
- Nelson A Araujo
- Escuela de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, Campus Colchagua, ruta I-90, Km 3, San Fernando, Chile.
| | - José Bubis
- Unidad de Polimorfismo Genético, Genómica y Proteómica, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, 1015-A, Venezuela
- Unidad de Señalización Celular y Bioquímica de Parásitos, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, 1015-A, Venezuela
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Caracas, 1081‑A, Venezuela
| |
Collapse
|
2
|
Zhou S, Lv P, Li M, Chen Z, Xin H, Reilly S, Zhang X. SARS-CoV-2 E protein: Pathogenesis and potential therapeutic development. Biomed Pharmacother 2023; 159:114242. [PMID: 36652729 PMCID: PMC9832061 DOI: 10.1016/j.biopha.2023.114242] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, which has seriously affected human health worldwide. The discovery of therapeutic agents is extremely urgent, and the viral structural proteins are particularly important as potential drug targets. SARS-CoV-2 envelope (E) protein is one of the main structural proteins of the virus, which is involved in multiple processes of the virus life cycle and is directly related to pathogenesis process. In this review, we present the amino acid sequence of the E protein and compare it with other two human coronaviruses. We then explored the role of E protein in the viral life cycle and discussed the pathogenic mechanisms that E protein may be involved in. Next, we summarize the potential drugs against E protein discovered in the current studies. Finally, we described the possible effects of E protein mutation on virus and host. This established a knowledge system of E protein to date, aiming to provide theoretical insights for mitigating the current COVID-19 pandemic and potential future coronavirus outbreaks.
Collapse
Affiliation(s)
- Shilin Zhou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Panpan Lv
- Clinical Laboratory, Minhang Hospital, Fudan University, Shanghai, China.
| | - Mingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Zihui Chen
- School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Cruz CAK, Medina PMB. Temporal changes in the accessory protein mutations of SARS-CoV-2 variants and their predicted structural and functional effects. J Med Virol 2022; 94:5189-5200. [PMID: 35764775 PMCID: PMC9349927 DOI: 10.1002/jmv.27964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
Abstract
Emerging variants enable the continuous spread of SARS-CoV-2 in humans. The factors contributing to behavioral differences in variants remain elusive despite associations with several Spike protein mutations. Exploring accessory proteins may provide a wider understanding of these differences since these proteins may affect viral processes that occur beyond infection. Various bioinformatics tools were utilized to identify significant accessory protein mutations and determine their structural and functional effects over time. The ViruClust web application was used to retrieve accessory protein amino acid sequences and determine mutation frequencies in these sequences across time. The structural and functional effects of the mutations were determined using Missense3D and PROVEAN, respectively. The accessory and Spike protein mutations were compared using mutation densities. Q57H and T151I of ORF3a; T21I and W27L of ORF6; G38V, V82A, and T120I of ORF7a; S31P and T40I of ORF7b; and R52I, C61F, and I121L of ORF8 were highly frequent in most variants of concern and were within known functional domains. Thus, these are good candidates for further experimental evaluation. Among the accessory proteins, ORF6 and ORF8 were highlighted because of their strong and weak correlation with Spike protein mutations, respectively.
Collapse
Affiliation(s)
- Christian Alfredo K. Cruz
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of MedicineUniversity of the Philippines ManilaManila, Metro ManilaPhilippines
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of MedicineUniversity of the Philippines ManilaManila, Metro ManilaPhilippines
| |
Collapse
|
4
|
Balasco N, Damaggio G, Esposito L, Villani F, Berisio R, Colonna V, Vitagliano L. A global analysis of conservative and non-conservative mutations in SARS-CoV-2 detected in the first year of the COVID-19 world-wide diffusion. Sci Rep 2021; 11:24495. [PMID: 34969951 PMCID: PMC8718531 DOI: 10.1038/s41598-021-04147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
The ability of SARS-CoV-2 to rapidly mutate represents a remarkable complicancy. Quantitative evaluations of the effects that these mutations have on the virus structure/function is of great relevance and the availability of a large number of SARS-CoV-2 sequences since the early phases of the pandemic represents a unique opportunity to follow the adaptation of the virus to humans. Here, we evaluated the SARS-CoV-2 amino acid mutations and their progression by analyzing publicly available viral genomes at three stages of the pandemic (2020 March 15th and October 7th, 2021 February 7th). Mutations were classified in conservative and non-conservative based on the probability to be accepted during the evolution according to the Point Accepted Mutation substitution matrices and on the similarity of the encoding codons. We found that the most frequent substitutions are T > I, L > F, and A > V and we observe accumulation of hydrophobic residues. These findings are consistent among the three stages analyzed. We also found that non-conservative mutations are less frequent than conservative ones. This finding may be ascribed to a progressive adaptation of the virus to the host. In conclusion, the present study provides indications of the early evolution of the virus and tools for the global and genome-specific evaluation of the possible impact of mutations on the structure/function of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy
| | - Gianluca Damaggio
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy
| | - Flavia Villani
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Naples, Italy.
| |
Collapse
|
5
|
Mahmood TB, Saha A, Hossan MI, Mizan S, Arman SMAS, Chowdhury AS. A next generation sequencing (NGS) analysis to reveal genomic and proteomic mutation landscapes of SARS-CoV-2 in South Asia. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100065. [PMID: 34841355 PMCID: PMC8610355 DOI: 10.1016/j.crmicr.2021.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 01/08/2023] Open
Abstract
48 SNPs were identified from the genome-wide analysis of 410 South Asian SARS-CoV-2 sequences. About 85% SNPs are packaged in ORF1ab, spike protein, and nucleocapsid. South Asian strains are highly related to the South American and European strains according to the phylogenetic analysis. Unlike other countries, frequency of 1163A>T missense mutation is very high (78.80%) in Bangladeshi samples.
Counts for SARS-CoV-2 associated infections and fatalities are on the rise globally even in regions which contained the spread momentarily. The pattern of infections has been found to be controlled by the distinctive selection pressures exerted by fluctuating environmental nature and hosts. A total of 410 whole-genome sequences submitted by the South Asian countries were retrieved from the GISAID database and analyzed to assess the impact and pattern of mutations in this region. Most common and frequent mutations in the South Asian countries are 241C > T, 3037C > T, 14408C > T, and 23403A > G and about 85% SNPs are localized in ORF1ab, spike protein, and nucleocapsid. Among the identified mutations, the proportion of missense type (54.17%) was highest, followed by the synonymous (41.66%) and the non-coding types (4.17%). While analyzing transmission source in terms of geolocation, the largest clustered group from the South Asian countries was based on the G-clade (D614G) (81.7%; 335/410 samples), tracing the inception and transmission of SARS-CoV-2 infections in the South Asian countries from European regions. Phylogenetic analysis also revealed that the South Asian strains are highly related to the South American and European strains. We found that G-clade mutations are more prevalent (96.19%) in the samples of Bangladesh which were also prevalent in the European isolates. Surprisingly, one missense mutation (1163A > T) in ORF1ab gene became dominant only in Bangladesh (78.8%), which led to debates regarding effects on the pathogenicity and transmissibility of the virus. Overall, the findings of this study highlight the frequently mutated SARS-CoV-2 variants among the COVID-19 patients in the South Asian countries which might ease containment of the disease in this region through investigating the virulence reducing factors as the identified mutations are strongly correlated with low infection and mortality rate.
Collapse
Affiliation(s)
- Tousif Bin Mahmood
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ayan Saha
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka 1212, Bangladesh.,Faculty of Medicine, Children's Cancer Institute, University of New South Wales, Australia
| | - Mohammad Imran Hossan
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shagufta Mizan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram 4331, Bangladesh
| | - S M Abu Sufian Arman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Afrin Sultana Chowdhury
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|