1
|
Park JY, Baek D, Min H, Yeom B, Ha JS, Kim Y. Aromatic Anion Carrier via Self-Assembly with Imidazolium-Fused Aromatic Amphiphiles. PRECISION CHEMISTRY 2025; 3:214-220. [PMID: 40313857 PMCID: PMC12042134 DOI: 10.1021/prechem.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 05/03/2025]
Abstract
The transport of anions across cell membranes is difficult because of the negatively charged outer surfaces of cell membranes. To overcome this limitation, herein, we report a system for transporting aromatic anions across cellular membranes via self-assembly using a synthetic imidazolium-fused aromatic amphiphile. The amphiphile with cationic and aromatic groups in close proximity to each other could interact with anionic pyranine via electrostatic and aromatic interactions to form supramolecular vesicles. Supramolecular vesicles based on the synthetic imidazolium-fused aromatic amphiphile and pyranine complex transport anionic aromatic pyranine across the membranes of live MCF-7 cells without cytotoxicity.
Collapse
Affiliation(s)
- Jung Yeon Park
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
| | - Dongjun Baek
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
| | - Hyunggeun Min
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
| | - Bongjun Yeom
- Department
of Chemical Engineering, Hanyang University, Seoul 24763, Republic of Korea
| | - Jeong Sook Ha
- Department
of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic
of Korea
| | - Yongju Kim
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
- Department
of Integrative Energy Engineering, Korea
University, Seoul 02841, Republic of Korea
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Du MX, Han LX, Wang SR, Xu KJ, Zhu WR, Qiao X, Liu CY. Solvent Effects on the 1 H-NMR Chemical Shifts of Imidazolium-Based Ionic Liquids. Chemphyschem 2023; 24:e202300292. [PMID: 37491736 DOI: 10.1002/cphc.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
The 1 H nuclear magnetic resonance (1 H-NMR) spectrum is a useful tool for characterizing the hydrogen bonding (H-bonding) interactions in ionic liquids (ILs). As the main hydrogen bond (H-bond) donor of imidazolium-based ILs, the chemical shift (δH2 ) of the proton in the 2-position of the imidazolium ring (H2) exhibits significant and complex solvents, concentrations and anions dependence. In the present work, based on the dielectric constants (ϵ) and Kamlet-Taft (KT) parameters of solvents, we identified that the δH2 are dominated by the solvents polarity and the competitive H-bonding interactions between cations and anions or solvents. Besides, the solvents effects on δH2 are understood by the structure of ILs in solvents: 1) In diluted solutions of inoizable solvents, ILs exist as free ions and the cations will form H-bond with solvents, resulting in δH2 being independent with anions but positively correlated with βS . 2) In diluted solutions of non-ionzable solvents, ILs exist as contact ion-pairs (CIPs) and H2 will form H-bond with anions. Since non-ionizable solvents hardly influence the H-bonding interactions between H2 and anions, the δH2 are not related to βS but positively correlated with βIL .
Collapse
Affiliation(s)
- Ming-Xuan Du
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Lin-Xue Han
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Shi-Rong Wang
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Kuang-Jie Xu
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Wen-Rui Zhu
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Xin Qiao
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Chen-Yang Liu
- Department CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Slesarenko NA, Chernyak AV, Avilova IA, Zabrodin VA, Volkov VI. Mobility of water molecules in Li+, Na+ and Cs+ ionic forms of Nafion membrane studied by NMR. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Damodaran K. Recent advances in NMR spectroscopy of ionic liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:1-27. [PMID: 35292132 DOI: 10.1016/j.pnmrs.2021.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
This review presents recent developments in the application of NMR spectroscopic techniques in the study of ionic liquids. NMR has been the primary tool not only for the structural characterization of ionic liquids, but also for the study of dynamics. The presence of a host of NMR active nuclei in ionic liquids permits widespread use of multinuclear NMR experiments. Chemical shifts and multinuclear coupling constants are used routinely for the structure elucidation of ionic liquids and of products formed by their covalent interactions with other materials. Also, the availability of a multitude of NMR techniques has facilitated the study of dynamical processes in them. These include the use of NOESY to study inter-ionic interactions, pulsed-field gradient techniques for probing transport properties, and relaxation measurements to elucidate rotational dynamics. This review will focus on the application of each of these techniques to investigate ionic liquids.
Collapse
Affiliation(s)
- Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|