1
|
Cheng X, Bae J. Recent Advancements in Fabrication, Separation, and Purification of Hierarchically Porous Polymer Membranes and Their Applications in Next-Generation Electrochemical Energy Storage Devices. Polymers (Basel) 2024; 16:3269. [PMID: 39684015 DOI: 10.3390/polym16233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, hierarchically porous polymer membranes (HPPMs) have emerged as promising materials for a wide range of applications, including filtration, separation, and energy storage. These membranes are distinguished by their multiscale porous structures, comprising macro-, meso-, and micropores. The multiscale structure enables optimizing the fluid dynamics and maximizing the surface areas, thereby improving the membrane performance. Advances in fabrication techniques such as electrospinning, phase separation, and templating have contributed to achieving precise control over pore size and distribution, enabling the creation of membranes with properties tailored to specific uses. In filtration systems, these membranes offer high selectivity and permeability, making them highly effective for the removal of contaminants in environmental and industrial processes. In electrochemical energy storage systems, the porous membrane architecture enhances ion transport and charge storage capabilities, leading to improved performance in batteries and supercapacitors. This review highlights the recent advances in the preparation methods for hierarchically porous structures and their progress in electrochemical energy storage applications. It offers valuable insights and references for future research in this field.
Collapse
Affiliation(s)
- Xiong Cheng
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Tang F, Yang J, Lin L, Liu Z, Wang Q, Ma W, Shang H, Wu H, He A. A capillary effect-inspired sponge-structured carboxymethyl cellulose aerogel layer-modified membrane for efficient separation of dye/salt under ultra-low-pressure. Int J Biol Macromol 2024; 282:137516. [PMID: 39532160 DOI: 10.1016/j.ijbiomac.2024.137516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/29/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
In the field of wastewater treatment, the efficient separation of dyes/salts and the high-pressure drive easily results in concentration polarization and membrane contamination. In this study, inspired by the capillary effect of natural sponge structure, an aerogel layer with a bionic three-dimensional mesh porous sponge structure was designed to construct an ultra-low-pressure membrane. With the assistance of tannic acid, the carboxymethyl cellulose (CMC) aerogel layer were constructed on the surface of polyvinylidene fluoride (PVDF) membrane using the layer-by-layer cross-linking and freeze-drying methods. The unique three-dimensional mesh structure of the aerogel provides a capillary effect that accelerates the rapid transport of water molecules. The introduction of polypyrrole (PPy) to the aerogel improves the mechanical properties of the aerogel, helping avoid the collapse during the separation process. Meanwhile, the formed PPy improves the membrane separation performance. The results showed, that under near-zero pressure conditions, the modified membrane had excellent dye/salt separation performance (dye rejection >99 %, salt rejection <10 %) and high flux of pure water (101.3 L·m-2·h-1). Moreover, the membrane also maintained good long-term stability. The study demonstrated the potential of using membrane for dye/salt separation applications by constructing bionic sponge-structured aerogels having capillary effect and good mechanical strength on membrane.
Collapse
Affiliation(s)
- Fengling Tang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jing Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Zitian Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qiying Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wensong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huiyang Shang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hao Wu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Aishan He
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Abou-Elanwar AM, Oh J, Lee S, Kim Y. Selective separation of dye/salt mixture using diatomite-based sandwich-like membrane. CHEMOSPHERE 2023; 330:138725. [PMID: 37084900 DOI: 10.1016/j.chemosphere.2023.138725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
A novel nanofiltration membrane was developed by entrapping a layer of modified diatomaceous earth between two layers of electrospun polysulfone (E-PSf) nanofibers. The diatomaceous earth particles and the fabricated membrane were characterized using FTIR, SEM, EDS, zeta potential, and water contact angle techniques. The static adsorption and dynamic separation of pristine E-PSF and sandwich-like membranes for methylene blue (MB) with/without salt were investigated under different operating conditions. The Langmuir model suited the MB adsorption isotherm data with a linear regression correlation coefficient (R2) >0.9955. As pH increased, both flux and MB rejection of the sandwich-like membrane improved by up to 183.8 LMH and 99.7%, respectively, when operated under gravity. The water flux of the sandwich-like membrane was sharply increased by increasing the pressure up to 19,518.2 LMH at 4.0 bar. However, this came at the expense of MB rejection (10.93%) and reduced its practical impact. At a high salt concentration, the sandwich-like membrane also indicated remarkable dye/salt separation with a higher permeation of salt (<0.2% NaCl rejection) and MB rejection (>99%). The performance of the regenerated diatomaceous material and membrane was maintained during five cycles of operation compared to that of the original ones.
Collapse
Affiliation(s)
- Ali M Abou-Elanwar
- Research Institute for Advanced Industrial Technology, Korea University, 2511, Sejong-ro, Sejong-si, 30019, Republic of Korea; Chemical Engineering Pilot Plant Department, Engineering Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Jongmin Oh
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, 30019, Republic of Korea
| | - Songbok Lee
- Research Institute for Advanced Industrial Technology, Korea University, 2511, Sejong-ro, Sejong-si, 30019, Republic of Korea
| | - Youngjin Kim
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, 30019, Republic of Korea.
| |
Collapse
|
4
|
Gholami F, Zinadini S, Kamrani SN, Zinatizadeh AA, Bahrami K. Color removal from wastewater using a synthetic high-performance antifouling GO-CPTMS@Pd-TKHPP/polyether sulfone nanofiltration membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20463-20478. [PMID: 34739672 DOI: 10.1007/s11356-021-16655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Modified graphene oxide with 5,10,15,20-tetrakis-(4-hexyloxyphenyl)-porphyrin and palladium (II) (signified by GO-CPTMS@Pd-TKHPP) prepared as a novel antifouling polyether sulfone (PES) blended nanofiller membrane. The membrane efficiency has been analyzed such as pure water flux (PWF), hydrophilicity, and antifouling features. By increasing of modified graphene oxide percentage from 0 to 0.1 wt.% in the polymer matrix, the PWF was incremented from 14.35 to 37.33 kg/m2·h at 4 bar. The membrane flux recovery ratio (FRR) has been investigated by applying powdered milk solution; the FRR results indicated that the 0.1 wt.%-modified graphene oxide membrane showed a positive effect on fouling behavior with Rir and FRR value 8.24% and 91.76%, respectively. The nanofiltration membrane performance was assessed applying the Direct Red 16 dye rejection. It was demonstrated that the optimal membranes (0.1 wt.%-modified graphene oxide) had notable dye removal (99.58% rejection). The results are also verified by measuring the scanning electron microscopy (SEM), water contact angle (WCA), and atomic microscopy analysis (AFM).
Collapse
Affiliation(s)
- Foad Gholami
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
| | - Sirus Zinadini
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran.
| | - Soheila Nakhjiri Kamrani
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
| | - Ali Akbar Zinatizadeh
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
- Department of Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67149-67346, Iran
| |
Collapse
|
5
|
Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Infusion of Silver-Polydopamine Particles into Polyethersulfone Matrix to Improve the Membrane's Dye Desalination Performance and Antibacterial Property. MEMBRANES 2021; 11:membranes11030216. [PMID: 33808528 PMCID: PMC8003254 DOI: 10.3390/membranes11030216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
The advancement in membrane science and technology, particularly in nanofiltration applications, involves the blending of functional nanocomposites into the membranes to improve the membrane property. In this study, Ag-polydopamine (Ag-PDA) particles were synthesized through in situ PDA-mediated reduction of AgNO3 to silver. Infusing Ag-PDA particles into polyethersulfone (PES) matrix affects the membrane property and performance. X-ray photoelectron spectroscopy (XPS) analyses confirmed the presence of Ag-PDA particles on the membrane surface. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) describe the morphology of the membranes. At an optimum concentration of Ag-PDA particles (0.3 wt % based on the concentration of PES), the modified membrane exhibited high water flux 13.33 L∙m−2∙h−1 at 4 bar with high rejection for various dyes of >99%. The PESAg-PDA0.3 membrane had a pure water flux more than 5.4 times higher than that of a pristine membrane. Furthermore, in bacterial attachment using Escherichia coli, the modified membrane displayed less bacterial attachment compared with the pristine membrane. Therefore, immobilizing Ag-PDA particles into the PES matrix enhanced the membrane performance and antibacterial property.
Collapse
|
7
|
|
8
|
Effect of introducing varying amounts of polydopamine particles into different concentrations of polyethersulfone solution on the performance of resultant mixed-matrix membranes intended for dye separation. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
|
10
|
Tavangar T, Jalali K, Alaei Shahmirzadi MA, Karimi M. Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – Nanofiltration process. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.070] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Lessan F, Karimi M. Selective water-permeable channels induced by polystyrene brushes within hairy nanocellulose/cellulose acetate membrane. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- F. Lessan
- Department of Textile Engineering; Amirkabir University of Technology; Hafez Avenue 15914 Tehran Iran
| | - M. Karimi
- Department of Textile Engineering; Amirkabir University of Technology; Hafez Avenue 15914 Tehran Iran
| |
Collapse
|