1
|
Poly(2-oxazoline)-derived star-shaped polymers as potential materials for biomedical applications: A review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Thermoresponsive Molecular Brushes with a Rigid-Chain Aromatic Polyester Backbone and Poly-2-alkyl-2-oxazoline Side Chains. Int J Mol Sci 2021; 22:ijms222212265. [PMID: 34830139 PMCID: PMC8622345 DOI: 10.3390/ijms222212265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
A new polycondensation aromatic rigid-chain polyester macroinitiator was synthesized and used to graft linear poly-2-ethyl-2-oxazoline as well as poly-2-isopropyl-2-oxazoline by cationic polymerization. The prepared copolymers and the macroinitiator were characterized by NMR, GPC, AFM, turbidimetry, static, and dynamic light scattering. The molar masses of the polyester main chain and the grafted copolymers with poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline side chains were 26,500, 208,000, and 67,900, respectively. The molar masses of the side chains of poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline and their grafting densities were 7400 and 3400 and 0.53 and 0.27, respectively. In chloroform, the copolymers conformation can be considered as a cylinder wormlike chain, the diameter of which depends on the side chain length. In water at low temperatures, the macromolecules of the poly-2-ethyl-2-oxazoline copolymer assume a wormlike conformation because their backbones are well shielded by side chains, whereas the copolymer with short side chains and low grafting density strongly aggregates, which was visualized by AFM. The phase separation temperatures of the copolymers were lower than those of linear analogs of the side chains and decreased with the concentration for both samples. The LCST were estimated to be around 45 °C for the poly-2-ethyl-2-oxazoline graft copolymer, and below 20 °C for the poly-2-isopropyl-2-oxazoline graft copolymer.
Collapse
|
3
|
Kirila T, Amirova A, Blokhin A, Tenkovtsev A, Filippov A. Features of Solution Behavior of Polymer Stars with Arms of Poly-2-alkyl-2-oxazolines Copolymers Grafted to the Upper Rim of Calix[8]arene. Polymers (Basel) 2021; 13:2507. [PMID: 34372110 PMCID: PMC8348004 DOI: 10.3390/polym13152507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
Star-shaped polymers with arms of block and gradient copolymers of 2-ethyl- and 2-isopropyl-2-oxazolines grafted to the upper rim of calix[8]arene were synthesized by the "grafting from" method. The ratio of 2-ethyl- and 2-isopropyl-2-oxazoline units was 1:1. Molar masses and hydrodynamic characteristics were measured using molecular hydrodynamics and optics methods in 2-nitropropane. The arms of the synthesized stars were short and the star-shaped macromolecules were characterized by compact dimensions and heightened intramolecular density. The influence of the arm structure on the conformation of star molecules was not observed. At low temperatures, the aqueous solutions of the studied stars were not molecular dispersed but individual molecules prevailed. One phase transition was detected for all solutions. The phase separation temperatures decreased with a growth of the content of more hydrophobic 2-isopropyl-2-oxazoline units. It was shown that the way of arms grafting to the calix[8]arene core affects the behavior of aqueous solutions of star-shaped poly-2-alkyl-2-oxazoline copolymers. In the case of upper rim functionalization, the shape of calix[8]arene resembles a plate. Accordingly, the core is less shielded from the solvent and the phase separation temperatures are lower than those for star-shaped poly-2-alkyl-2-oxazolines with lower rim functionalization of the calix[8]arene.
Collapse
Affiliation(s)
- Tatyana Kirila
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy Pr. 31, 199004 Saint Petersburg, Russia; (A.A.); (A.B.); (A.T.); (A.F.)
| | | | | | | | | |
Collapse
|
4
|
Thermo- and pH-responsive copolymer of N-isopropylacrylamide with acryloylvaline: synthesis and properties in aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02515-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Kirila T, Smirnova A, Razina A, Tenkovtsev A, Filippov A. Influence of Salt on the Self-Organization in Solutions of Star-Shaped Poly-2-alkyl-2-oxazoline and Poly-2-alkyl-2-oxazine on Heating. Polymers (Basel) 2021; 13:1152. [PMID: 33916516 PMCID: PMC8038499 DOI: 10.3390/polym13071152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
The water-salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0-0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.
Collapse
Affiliation(s)
- Tatyana Kirila
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy Pr. 31, 199004 Saint Petersburg, Russia; (A.S.); (A.R.); (A.T.); (A.F.)
| | | | | | | | | |
Collapse
|
6
|
Zahoranová A, Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv Healthc Mater 2021; 10:e2001382. [PMID: 33448122 PMCID: PMC11468752 DOI: 10.1002/adhm.202001382] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Indexed: 12/30/2022]
Abstract
For many decades, poly(2-oxazoline)s and poly(2-oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world-wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2-oxazoline)-based drug conjugate. The huge chemical and structural toolbox poly(2-oxazoline)s and poly(2-oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self-assemblies and non-covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2-oxazoline)s and poly(2-oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2-oxazoline)s and poly(2-oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2-oxazoline)s and poly(2-oxazine)s is learned.
Collapse
Affiliation(s)
- Anna Zahoranová
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163MCVienna1060Austria
| | - Robert Luxenhofer
- Functional Polymer MaterialsChair for Advanced Materials SynthesisInstitute for Functional Materials and BiofabricationDepartment of Chemistry and PharmacyJulius‐Maximilians‐Universität WürzburgRöntgenring 11Würzburg97070Germany
- Soft Matter ChemistryDepartment of ChemistryHelsinki UniversityHelsinki00014Finland
| |
Collapse
|
7
|
Rodchenko S, Amirova A, Kurlykin M, Tenkovtsev A, Milenin S, Filippov A. Amphiphilic Molecular Brushes with Regular Polydimethylsiloxane Backbone and Poly-2-isopropyl-2-oxazoline Side Chains. 2. Self-Organization in Aqueous Solutions on Heating. Polymers (Basel) 2020; 13:E31. [PMID: 33374766 PMCID: PMC7796000 DOI: 10.3390/polym13010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/18/2023] Open
Abstract
The behavior of amphiphilic molecular brushes in aqueous solutions on heating was studied by light scattering and turbidimetry. The main chain of the graft copolymers was polydimethylsiloxane, and the side chains were thermosensitive poly-2-isopropyl-2-oxazoline. The studied samples differed in the length of the grafted chains (polymerization degrees were 14 and 30) and, accordingly, in the molar fraction of the hydrophobic backbone. The grafting density of both samples was 0.6. At low temperatures, macromolecules and aggregates, which formed due to the interaction of main chains, were observed in solutions. At moderate temperatures, heating solutions of the sample with short side chains led to aggregation due to dehydration of poly-2-isopropyl-2-oxazoline and the formation of intermolecular hydrogen bonds. In the case of the brush with long grafted chains, dehydration caused the formation of intramolecular hydrogen bonds and the compaction of molecules and aggregates. The lower critical solution temperature for solutions of the sample with long side chains was higher than LCST for the sample with short side chains. It was shown that the molar fraction of the hydrophobic component and the intramolecular density are the important factors determining the LCST behavior of amphiphilic molecular brushes in aqueous solutions.
Collapse
Affiliation(s)
- Serafim Rodchenko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Alina Amirova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| | - Sergey Milenin
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya, 70, 117393 Moscow, Russia;
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 31, 199004 Saint Petersburg, Russia; (A.A.); (M.K.); (A.T.); (A.F.)
| |
Collapse
|
8
|
Tarabukina E, Fatullaev E, Krasova A, Kurlykin M, Tenkovtsev A, Sheiko SS, Filippov A. Synthesis, Structure, Hydrodynamics and Thermoresponsiveness of Graft Copolymer with Aromatic Polyester Backbone at Poly(2-isopropyl-2-oxazoline) Side Chains. Polymers (Basel) 2020; 12:polym12112643. [PMID: 33182803 PMCID: PMC7698206 DOI: 10.3390/polym12112643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
New thermoresponsive graft copolymers with an aromatic polyester backbone and poly(2-isopropyl-2-oxazoline) (PiPrOx) side chains are synthesized and characterized by NMR and GPC. The grafting density of side chains is 0.49. The molar masses of the graft-copolymer, its backbone, side chains, and the modeling poly-2-isopropyl-2-oxaziline are 74,000, 19,000, 4300, and 16,600 g·mol−1, respectively. Their conformational properties in nitropropane as well as thermoresponsiveness in aqueous solutions are studied and compared with that of free side chains, i.e., linear PiPrOx with a hydrophobic terminal group. In nitropropane, the graft-copolymer adopts conformation of a 13-arm star with a core of a collapsed main chain and a PiPrOx corona. Similarly, a linear PiPrOx chain protects its bulky terminal group by wrapping around it in a selective solvent. In aqueous solutions at low temperatures, graft copolymers form aggregates due to interaction of hydrophobic backbones, which contrasts to molecular solutions of the model linear PiPrOx. The lower critical solution temperature (LCST) for the graft copolymer is around 20 °C. The phase separation temperatures of the copolymer solution were lower than that of the linear chain counterpart, decreasing with concentration for both polymers.
Collapse
Affiliation(s)
- Elena Tarabukina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
- Correspondence:
| | - Emil Fatullaev
- School of Photonics, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 199004 Saint-Petersburg, Russia;
| | - Anna Krasova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Sergei S. Sheiko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Alexander Filippov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| |
Collapse
|
9
|
Influence of molecular architecture on behavior of thermoresponsive poly-2-ethyl-2-oxazine in saline media. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Amirova A, Kirila T, Kurlykin M, Tenkovtsev A, Filippov A. Influence of Cross-Linking Degree on Hydrodynamic Behavior and Stimulus-Sensitivity of Derivatives of Branched Polyethyleneimine. Polymers (Basel) 2020; 12:polym12051085. [PMID: 32397458 PMCID: PMC7284568 DOI: 10.3390/polym12051085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Cross-linked derivatives of acylated branched polyethyleneimine containing 2-isopropyl-2-oxazoline units were investigated in chloroform and aqueous solutions using methods of molecular hydrodynamics, static and dynamic light scattering, and turbidity. The studied samples differed by the cross-linker content. The solubility of the polyethyleneimines studied worsened with the increasing mole fraction of the cross-linker. Cross-linked polyethyleneimines were characterized by small dimensions in comparison with linear analogs; the increase in the cross-linker content leads to a growth of intramolecular density. At low temperatures, the aqueous solutions of investigated samples were molecularly dispersed, and the large aggregates were formed due to the dehydration of oxazoline units and the formation of intermolecular hydrogen bonds. For the cross-linked polyethyleneimines, the phase separation temperatures were lower than that for linear and star-shaped poly-2-isopropyl-2-oxazolines. The low critical solution temperature of the solutions of studied polymers decreased with the increasing cross-linker mole fraction. The time of establishment of the constant characteristics of the studied solutions after the jump-like change in temperature reaches 3000 s, which is at least two times longer than for linear polymers.
Collapse
|
11
|
Tarabukina E, Rozanova A, Fundueanu G, Constantin M, Harabagiu V, Filippov A. Thermo-Sensitivity of poly-N-isopropylacrylamide with Statistically Introduced D,L-Allylglycine Betainic Units. J MACROMOL SCI B 2019. [DOI: 10.1080/00222348.2019.1695379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Elena Tarabukina
- Institute of Macromolecular Compounds of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Anna Rozanova
- Higher School of Technology and Energetics, Saint-Petersburg, Russia
| | | | | | | | - Alexander Filippov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
12
|
Kirila T, Smirnova A, Filippov A, Razina A, Tenkovtsev A, Filippov A. Thermosensitive star-shaped poly-2-ethyl-2-oxazine. Synthesis, structure characterization, conformation, and self-organization in aqueous solutions. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Filippov A, Tarabukina E, Kudryavtseva A, Fatullaev E, Kurlykin M, Tenkovtsev A. Molecular brushes with poly-2-ethyl-2-oxazoline side chains and aromatic polyester backbone manifesting double stimuli responsiveness. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04558-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Zakharova NV, Simonova MA, Zelinskii SN, Annenkov VV, Filippov AP. Synthesis, molecular characteristics, and stimulus-sensitivity of graft copolymer of chitosan and poly(N,N-diethylacrylamide). J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
The behavior of thermoresponsive star-shaped poly-2-isopropyl-2-oxazoline in saline media. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Amirova A, Kirila T, Blokhin A, Razina A, Tenkovtsev A, Filippov A. Behavior of thermoresponsive ionogenic poly(2-isopropyl-2-oxazoline) stars and their mixture in aqueous solutions. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1603588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alina Amirova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Tatyana Kirila
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexey Blokhin
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alla Razina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander Filippov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
17
|
Kirila TY, Kurlykin MP, Ten’kovtsev AV, Filippov AP. Behavior of a Thermosensitive Star-Shaped Polymer with Polyethyloxazoline-block-Polyisopropyloxazoline Copolymer Arms. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18030069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Thermo- and pH-responsive phase separation of N-isopropylacrylamide with 4-vinylpyridine random copolymer in aqueous solutions. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4269-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Smirnova AV, Kirila TU, Kurlykin MP, Tenkovtsev AV, Filippov AP. Behavior of aqueous solutions of polymer star with block copolymer poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) arms. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1366196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A. V. Smirnova
- Institute of Macromolecular Compounds, Institution of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - T. U. Kirila
- Institute of Macromolecular Compounds, Institution of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - M. P. Kurlykin
- Institute of Macromolecular Compounds, Institution of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. V. Tenkovtsev
- Institute of Macromolecular Compounds, Institution of Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. P. Filippov
- Institute of Macromolecular Compounds, Institution of Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
20
|
Amirova A, Rodchenko S, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov A. Influence of a hydrophobic core on thermoresponsive behavior of dendrimer-based star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1285-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Kudryavtseva AA, Kurlykin MP, Tarabukina EB, Tenkovtsev AV, Filippov AP. Behavior of thermosensitive graft copolymer with aromatic polyester backbone and poly-2-ethyl-2-oxazoline side chains in aqueous solutions. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1342188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. A. Kudryavtseva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - M. P. Kurlykin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - E. B. Tarabukina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. V. Tenkovtsev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A. P. Filippov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
22
|
Tarabukina E, Seyednov E, Filippov A, Constantin M, Harabagiu V, Fundueanu G. Thermoresponsive properties of N-isopropylacrylamide with methacrylic acid copolymer in media of different acidity. Macromol Res 2017. [DOI: 10.1007/s13233-017-5077-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|