1
|
Fang YG, Lin JY, Zhang YC, Qiu QW, Zeng Y, Li WX, Wang ZY. A reactive compatibilization with the compound containing four epoxy groups for polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch ternary bio-composites. Int J Biol Macromol 2024; 262:129998. [PMID: 38336326 DOI: 10.1016/j.ijbiomac.2024.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
How to effectively improve the poor interfacial adhesion between polylactic acid/poly(butylene adipate-co-terephthalate) (PLA/PBAT) matrix and thermoplastic starch (TPS) is still a challenge. Therefore, this work aims to introduce a convenient method to enhance the performance of PLA/PBAT/TPS blend by melt reactive extrusion. Here, using 4,4'-methylene-bis(N,N-diglycidyl-aniline) (MBDG) containing four epoxy groups as a reactive compatibilizer, and respectively using 1-methylimidazole (MI) or triethylenediamine (TD) as a catalyzer, serial PLA/PBAT/TPS ternary bio-composites are successfully prepared via melt reactive extrusion. The results showed that, under the catalysis of organic base, especially MI, the epoxy groups of MBDG can effectively react with hydroxyl and carboxyl groups of PLA/PBAT and hydroxyl groups in TPS to form chain-expanded and cross-linked structures. The tensile strength of the composites is increased by 20.0 % from 21.1 MPa, and the elongation at break is increased by 182.4 % from 17.6 % owing to the chain extension and the forming of cross-linked structures. The molecular weight, thermal stability, crystallinity, and surface hydrophobicity of the materials are gradually improved with the increase of MBDG content. The melt fluidity of the composites is also improved due to the enhancement of compatibility. The obtained PLA/PBAT/TPS materials have the potential to be green plastic products with good properties.
Collapse
Affiliation(s)
- Yong-Gan Fang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Jian-Yun Lin
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China; Guangdong Esquel Textiles Co., Ltd., Foshan, Guangdong 528500, PR China.
| | - You-Cai Zhang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Qi-Wen Qiu
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Yong Zeng
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Wen-Xi Li
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
2
|
Nouri A, Ang WL, Mahmoudi E, Chua SF, Mohammad AW, Benamor A, Ba-Abbad MM, Leo CP. Decoration of polylactic acid on graphene oxide for efficient adsorption of methylene blue and tetracycline. CHEMOSPHERE 2023; 322:138219. [PMID: 36828108 DOI: 10.1016/j.chemosphere.2023.138219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Decorating nanomaterials on graphene oxide (GO) can enhance its adsorption capacity and removal efficiency of water pollutants. In this study, for the first time, nano-sized polylactic acid (PLA) has been successfully decorated on the surface of GO through a facile synthesis approach. The adsorptive efficiency of GO-PLA for removing methylene blue (MB) and tetracycline (TC) from an aqueous solution was examined. The characterization confirmed the successful decoration of PLA on GO nanosheets with the nano size of PLA. It was hypothesized that the PLA was decorated on the surface of GO through covalent bonding between oxygen-containing functional groups and lactide molecules. The optimum adsorption parameters determined were at the adsorbent dose of 0.5 g L-1, pH 4, contact time of 120 min, and temperature of 318 K. The pseudo-second-order kinetic model described the contaminants' adsorption behaviour, and the intraparticle diffusion model revealed that both surface adsorption and intraparticle diffusion controlled the adsorption process. Langmuir isotherm model best described the adsorption behaviour of the pollutants on GO-PLA and demonstrated the maximum monolayer uptake capacities of MB (332.5 mg g-1) and TC (223.7 mg g-1). The adsorption results indicated that the uptake capacities of GO-PLA in comparison to GO have increased by approximately 70% and 110% for MB and TC, respectively. These observations reflect the remarkable role of nano-sized PLA that enhanced the adsorption capacity due to its additional functional group and larger surface area.
Collapse
Affiliation(s)
- Alireza Nouri
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Siew Fen Chua
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | | | | | - Choe Peng Leo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia.
| |
Collapse
|
3
|
Sun YL, Tu LJ, Tsou CH, Lin SM, Lin L, De Guzman MR, Zeng R, Xia Y. Thermal and mechanical properties of biodegradable nanocomposites prepared by poly(lactic acid)/acetyl tributyl citrate reinforced with attapulgite. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Jiang W, Liang Y, Zhang Y, Xie Z, Zhou J, Kang J, Cao Y, Xiang M. Preparation of graphene oxide-silica nanohybrid/poly(lactic acid) biaxially oriented films with enhanced mechanical properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Díez-Rodríguez TM, Blázquez-Blázquez E, Pérez E, Cerrada ML. Influence of Content in D Isomer and Incorporation of SBA-15 Silica on the Crystallization Ability and Mechanical Properties in PLLA Based Materials. Polymers (Basel) 2022; 14:polym14061237. [PMID: 35335567 PMCID: PMC8949796 DOI: 10.3390/polym14061237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Two L-rich polylactides (PLLA) with distinct contents in D isomer and their composites with an intermediate amount of mesoporous Santa Barbara Amorphous-15 (SBA-15) (about 9 wt.%) particles were attained by melt extrusion for the evaluation of the effect of content in D isomer and incorporation of mesoporous silica on the structural PLLA features and on their ultimate mechanical performance. For that, samples have been crystallized under dynamic and isothermal tests (from the melt and from the glassy states). The results from DSC and X-ray diffraction show obtainment of the pure α’ and α modifications at different intervals of crystallization temperature depending on the D steroisomer amount of the PLLA used. Furthermore, several phase transitions are observed depending on the crystallinity reached and the polymorphs developed during the isothermal crystallization from the glass: an additional cold crystallization, the α’/α transformation and the subsequent melting process, appearing all of them at temperatures clearly dependent on the D content. Rigidity, measured through microhardness in amorphous samples, is also affected by the D isomer and the presence of SBA-15 particles. Reinforcement effect of mesoporous silica is relatively more important in the matrix with the highest D content.
Collapse
|
6
|
Li TT, Zhang H, Huang SY, Pei X, Lin Q, Tian S, Ma Z, Lin JH. Preparation and property evaluations of PCL/PLA composite films. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02439-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Cheng Y, Dong H, Wu Y, Xiao K. Preparation of an Amidated Graphene Oxide/Sulfonated Poly Ether Ether Ketone (AGO/SPEEK) Modified Atmosphere Packaging for the Storage of Cherry Tomatoes. Foods 2021; 10:foods10030552. [PMID: 33800032 PMCID: PMC8001178 DOI: 10.3390/foods10030552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The shelf life of cherry tomatoes is short so that new and efficient preservation techniques or procedures are required to reduce postharvest losses. This study focused on the development of a sulfonated poly ether ether ketone (SPEEK) film incorporated with amidated graphene oxide (AGO), for the storage of cherry tomatoes in modified atmosphere packaging. The mechanical properties, gas permeability, and moisture permeability were subsequently tested. The evolution of attributes related to shelf life, such as gas composition, physicochemical properties, and sensory properties were also monitored during storage trials. AGO, as an inorganic filler, increases the thermal stability and mechanical properties of SPEEK-based films, while it reduces the water absorption, swelling rate, and moisture permeability. Importantly, all the AGO/SPEEK films exhibited enhanced gas permeability and selective permeability of CO2/O2 relative to the SPEEK film. Moreover, 0.9% (w/w) AGO/SPEEK film showed an enhanced permeability coefficient of CO2, corresponding to an increase of 50.7%. It could further improve the selective coefficient of CO2/O2 to 67.1%. The results of preservation at 8 °C revealed that: 0.9% (w/w) AGO/SPEEK film was significantly effective at maintaining the quality and extending the shelf life of cherry tomatoes from 15 to 30 days, thereby suggesting the potential for applying AGO-incorporated SPEEK films for food packaging materials.
Collapse
Affiliation(s)
- Yao Cheng
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Hao Dong
- School of Food Science and Technology, Zhongkai University of Agriculture and Engineering, 24, Dongsha Street, Fangzhi Rd., Haizhu District, Guangzhou 510225, China;
| | - Yuanyue Wu
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Kaijun Xiao
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
- Correspondence: ; Tel.: +86-020-87113848
| |
Collapse
|
8
|
Colonna S, Battegazzore D, Eleuteri M, Arrigo R, Fina A. Properties of Graphene-Related Materials Controlling the Thermal Conductivity of Their Polymer Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2167. [PMID: 33143017 PMCID: PMC7692405 DOI: 10.3390/nano10112167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature. However, detailed correlations between GRM-based nanocomposites features, including nanoplatelets thickness and size, defectiveness, composition and dispersion, with their thermal conductivity remain mostly undefined. In the present paper, the thermal conductivity of GRM-based polymer nanocomposites, prepared by melt polymerization of cyclic polybutylene terephtalate oligomers and exploiting 13 different GRM grades, was investigated. The selected GRM, covering a wide range of specific surface area, size and defectiveness, secure a sound basis for the understanding of the effect of GRM properties on the thermal conductivity of their relevant polymer nanocomposites. Indeed, the obtained thermal conductivity appeares to depend on the interplay between the above GRM feature. In particular, the combination of low GRM defectiveness and high filler percolation density was found to maximize the thermal conductivity of nanocomposites.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Fina
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy; (S.C.); (D.B.); (M.E.); (R.A.)
| |
Collapse
|
9
|
Feng P, Peng S, Shuai C, Gao C, Yang W, Bin S, Min A. In Situ Generation of Hydroxyapatite on Biopolymer Particles for Fabrication of Bone Scaffolds Owning Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46743-46755. [PMID: 32940994 DOI: 10.1021/acsami.0c13768] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxyapatite (HAP) can endow a biopolymer scaffold with good bioactivity and osteoconductive ability, while the interfacial bonding is fairly weak between HAP and biopolymers. In this study, HAP was in situ generated on poly(l-lactic acid) (PLLA) particles, and then they were used to fabricate a scaffold by selective laser sintering. Detailedly, PLLA particles were first functionalized by dopamine oxide polymerization, which introduced abundance active catechol groups on the particle surface, and subsequently, the catechol groups concentrated Ca2+ ions by chelation in a simulated body fluid solution, and then, Ca2+ ions absorbed PO43- ions through electrostatic interactions for in situ nucleation of HAP. The results indicated that HAP was homogeneously generated on the PLLA particle surface, and HAP and PLLA exhibited good interfacial bonding in the HAP/PLLA scaffolds. Meanwhile, the scaffolds displayed excellent bioactivity by inducing apatite precipitation and provided a good environment for human bone mesenchymal stem cell attachment, proliferation, and osteogenic differentiation. More importantly, the ingrowth of blood vessel and the formation of new bone could be stimulated by the scaffolds in vivo, and the bone volume fraction and bone mineral density increased by 44.44 and 41.73% compared with the pure PLLA scaffolds, respectively. Serum biochemical indexes fell within the normal range, which indicated that there was no harmful effect on the normal functioning of the body after implanting the scaffold.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, School of basic Medical Science, Central South University, Changsha 410013, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shizhen Bin
- Department of Oncology, Third Xiangya Hospital of Central South University, Central South University, Changsha 410013, China
| | - Anjie Min
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
10
|
Synthesis of Graphene Oxide-Polystyrene Graft Polymer Based on Reversible Addition Fragmentation Chain Transfer and Its Effect on Properties, Crystallization, and Rheological Behavior of Poly (Lactic Acid). ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9364657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Graphene oxide-polystyrene graft polymer (SGO-PS) was prepared by reversible addition-fragmentation chain transfer radical polymerization method. Orthogonal experiments indicated that the optimum synthesis reaction conditions for SGO-PS were as follows: the millimole ratio of chain transfer agent to initiator was 0.15 : 0.3, and the amount of styrene was 8 mL at 80°C for 12 hours. The products were characterized by Fourier transform infrared spectroscopy and thermal weightlessness analysis, and the highest grafting rate of SGO-PS was 62.46%. Then, PLA/SGO-PS nanocomposites were prepared using SGO-PS as fillers by melt intercalation method, and its crystallinity, mechanical properties, and thermal stability were significantly improved. Compared with pure PLA, the crystallinity of PLA/SGO-PS (0.3 wt%) nanocomposites was increased by 5 times. Multiple melting behavior tests showed that the introduction of SGO-PS caused the PLA molecular chain to be discharged into the unit cell in time, and the melting temperature shifted to a higher temperature, which ultimately made the grain structure of PLA composites more complete and stable than pure PLA. The rheological performance test showed that the uniform dispersion of SGO-PS in the PLA matrix inhibited the free movement of the PLA molecular chain and caused higher flow resistance, resulting in an increase in the complex viscosity, storage modulus, and loss modulus of PLA/SGO-PS.
Collapse
|
11
|
Chen J, Deng C, Hong R, Fu Q, Zhang J. Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02206-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Sanes J, Sánchez C, Pamies R, Avilés MD, Bermúdez MD. Extrusion of Polymer Nanocomposites with Graphene and Graphene Derivative Nanofillers: An Overview of Recent Developments. MATERIALS 2020; 13:ma13030549. [PMID: 31979287 PMCID: PMC7040573 DOI: 10.3390/ma13030549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
This review is focused on the recent developments of nanocomposite materials that combine a thermoplastic matrix with different forms of graphene or graphene oxide nanofillers. In all cases, the manufacturing method of the composite materials has been melt-processing, in particular, twin-screw extrusion, which can then be followed by injection molding. The advantages of this processing route with respect to other alternative methods will be highlighted. The results point to an increasing interest in biodegradable matrices such as polylactic acid (PLA) and graphene oxide or reduced graphene oxide, rather than graphene. The reasons for this will also be discussed.
Collapse
|
13
|
Yang L, Zhen W. Preparation and characterization of phosphorylated graphene oxide grafted with poly(L‐lactide) and its effect on the crystallization, rheological behavior, and performance of poly (lactic acid). POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li Yang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous RegionXinjiang University Urumqi China
| | - Weijun Zhen
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous RegionXinjiang University Urumqi China
| |
Collapse
|
14
|
Martínez-Mercado E, Ruiz-Treviño FA, González-Montiel A, Lugo-Uribe LE, Flores-Santos L. Long chain branched structures of polylactic acid through reactive extrusion with styrene-acrylic copolymers bearing epoxy functional groups. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1938-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|