1
|
Ribeiro FM, Silva-Oliveira D, Cervi G, Koyanagui ED, Correra TC. Isomeric Speciation of Bisbenzoxazine Intermediates by Ion Spectroscopy and Ion Mobility Mass Spectrometry. ACS OMEGA 2024; 9:40932-40940. [PMID: 39372032 PMCID: PMC11447905 DOI: 10.1021/acsomega.4c06205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Bisbenzoxazines (BisBz) are a relevant model for the diverse bifunctional benzoxazines that are used to increase the polybenzoxazines cross-linking extensions and modulate the final resin properties for various usages. The presence of side products and intermediates during monomer formation can influence the resin characteristics by inducing chain termination and ramifications, affecting the polymerization and cure processes. This work investigated the diverse isomeric intermediates and side products that are present during the BisBz formation from bisphenol A, aniline, and formaldehyde by ion mobility coupled to tandem mass spectrometry (MS/MS) and ion spectroscopy techniques. The species detected in this work suggest that these multifunctional phenols open diverse concurrent reaction pathways based on two main reactive steps: (i) the imine/iminium phenol attack to form a phenylamino intermediate and (ii) the formaldehyde attack followed by dehydration to form the oxazine ring. The species observed also support previous studies of the benzoxazine formation mechanism and showcase the application of advanced analytical techniques in studying complex chemical systems.
Collapse
Affiliation(s)
- Francisco
W. M. Ribeiro
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Danilo Silva-Oliveira
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Gustavo Cervi
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Eduardo D. Koyanagui
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Thiago C. Correra
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Kang N, Yang S, Xiong X, Han A, Ren R, Wang J. The Performance and Synthesis of Alkynyl-Functionalized Benzoxazine Containing Phthalide Side Groups and Cyano Groups with Different Molecular Weights. Polymers (Basel) 2023; 15:3478. [PMID: 37631535 PMCID: PMC10459290 DOI: 10.3390/polym15163478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Benzoxazine resins are widely employed in a variety of applications due to their exceptional heat resistance and treatment properties. However, traditional benzoxazine resins still confront hurdles in today's engineering applications, such as their inability to provide long-term service in high-temperature settings and their inadequate toughness. In this study, four alkyne-functionalized benzoxazines with phthalide side groups and cyano groups of varying molecular weights were produced. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H-NMR) were used to characterize the resin structure, and differential scanning calorimetry (DSC) was used to investigate the thermal curing kinetics at different warming rates. The apparent activation energy was 116.9 kJ/mol. In-situ FT-IR was used to investigate the cure mechanism. Dynamic mechanical analysis (DMA) was used to evaluate the gelation time of BOZ series resins at various temperatures, and the curing process was designed by combining the results with DSC. The Tg of the composites made using BOZ-1N21 as the matrix was 336 °C, which was much higher than the Tg of the BP-a resin made with aniline, phenolphthalein, and formaldehyde (Tg = 251 °C). As a result, the resin system is expected to be employed in applications requiring high-temperature resistance and toughness.
Collapse
Affiliation(s)
- Nianjun Kang
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
| | - Shuai Yang
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Xuhai Xiong
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Anchang Han
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Rong Ren
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Jing Wang
- Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China; (N.K.); (S.Y.); (A.H.); (R.R.); (J.W.)
- School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
3
|
Yao Z, Lu Y, Song J, Zhang K. Synthesis of Daidzein and Thiophene Containing Benzoxazine Resin and Its Thermoset and Carbon Material. Molecules 2023; 28:5077. [PMID: 37446739 DOI: 10.3390/molecules28135077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, a novel bio-based high-performance bisbenzoxazine resin was synthesized from daidzein, 2-thiophenemethylamine and paraformaldehyde. The chemical structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR). The polymerization process was systematically studied using differential scanning calorimetry (DSC) and in situ FT-IR spectra. It can be polymerized through multiple polymerization behaviors under the synergistic reaction of thiophene rings with benzopyrone rather than a single polymerization mechanism of traditional benzoxazines, as reported. In addition, thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC) were used to study the thermal stability and flame retardancy of the resulting polybenzoxazine. The thermosetting material showed a high carbon residue rate of 62.8% and a low heat release capacity (HRC) value of 33 J/gK without adding any flame retardants. Based on its outstanding capability of carbon formation, this newly obtained benzoxazine resin was carbonized and activated to obtain a porous carbon material doped with both sulfur and nitrogen. The CO2 absorption of the carbon material at 0 °C and 25 °C at 1 bar was 3.64 mmol/g and 3.26 mmol/g, respectively. The above excellent comprehensive properties prove its potential applications in many advanced fields.
Collapse
Affiliation(s)
- Zhenhao Yao
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yin Lu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianan Song
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Lu Y, Peng Y, Yang Y, Liu J, Zhang K. Low-Temperature Terpolymerizable Benzoxazine Monomer Bearing Norbornene and Furan Groups: Synthesis, Characterization, Polymerization, and Properties of Its Polymer. Molecules 2023; 28:molecules28093944. [PMID: 37175354 PMCID: PMC10179839 DOI: 10.3390/molecules28093944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
There is an urgency to produce novel high-performance resins to support the rapid development of the aerospace field and the electronic industry. In the present work, we designed and consequently synthesized a benzoxazine monomer (oHPNI-fa) bearing both norbornene and furan groups through the flexible benzoxazine structural design capability. The molecular structure of oHPNI-fa was verified by the combination characterization of nuclear magnetic resonance spectrum, FT-IR technology, and high-resolution mass spectrum. The thermally activated terpolymerization was monitored by in situ FT-IR as well as differential scanning calorimetry (DSC). Moreover, the low-temperature-curing characteristics of oHPNI-fa have also been revealed and discussed in the current study. Furthermore, the curing kinetics of the oHPNI-fa were investigated by the Kissinger and Ozawa methods. The resulting highly cross-linked thermoset based on oHPNI-fa showed excellent thermal stability as well as flame retardancy (Td10 of 425 °C, THR of 4.9 KJg-1). The strategy for molecular design utilized in the current work gives a guide to the development of high-performance resins which can potentially be applied in the aerospace and electronics industries.
Collapse
Affiliation(s)
- Yin Lu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yaliang Peng
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Ring Opening Polymerization Used for the Production of VOC Free High-Performance Ecofriendly Novel PBZ/PDA/CeO2 Nanocomposites. Polymers (Basel) 2023; 15:polym15061416. [PMID: 36987197 PMCID: PMC10057122 DOI: 10.3390/polym15061416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
This study analyzed the fabrication and characterization of polybenzoxazine/polydopamine/ceria as tertiary nanocomposites. To this end, a new benzoxazine monomer (MBZ) was fabricated based on the well-known Mannich reaction of naphthalene-1-amine, 2-tert-butylbenzene-1,4-diol and formaldehyde under ultrasonic-assisted process. Polydopamine (PDA) was used as dispersing polymer nanoparticles and surface modifier for CeO2 by in-situ polymerization of dopamine with the assistance of ultrasonic waves. Then, nanocomposites (NC)s were manufactured by in-situ route under thermal conditions. The FT-IR and 1H-NMR spectra confirmed the preparation of the designed MBZ monomer. The FE-SEM and TEM results showed the morphological aspects of prepared NCs and illustrated the distribution of CeO2 NPs in the polymer matrix. The XRD patterns of NCs showed the presence of crystalline phases of nanoscale CeO2 in an amorphous matrix. The TGA results reveal that the prepared NCs are classified as thermally stable materials.
Collapse
|
6
|
Yang Y, Lu Y, Zhang K. A highly thermally stable benzoxazine resin derived from norbornene and natural renewable tyramine and furfurylamine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Kuo SW. Hydrogen bonding interactions in polymer/polyhedral oligomeric silsesquioxane nanomaterials. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02885-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Metal Complexes of the Porphyrin-Functionalized Polybenzoxazine. Polymers (Basel) 2022; 14:polym14030449. [PMID: 35160439 PMCID: PMC8839356 DOI: 10.3390/polym14030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
New porphyrin-functionalized benzoxazine (Por-BZ) in high purity and yield was synthesized in this study based on 1H and 13C NMR and FTIR spectroscopic analyses through the reduction of Schiff base formed from tetrakis(4-aminophenyl)porphyrin (TAPP) and salicylaldehyde and the subsequent reaction with CH2O. Thermal properties of the product formed through ring-opening polymerization (ROP) of Por-BZ were measured using DSC, TGA and FTIR spectroscopy. Because of the rigid structure of the porphyrin moiety appended to the benzoxazine unit, the temperature required for ROP (314 °C) was higher than the typical Pa-type benzoxazine monomer (ca. 260 °C); furthermore, poly(Por-BZ) possessed a high thermal decomposition temperature (Td10 = 478 °C) and char yield (66 wt%) after thermal polymerization at 240 °C. An investigation of the thermal and luminescence properties of metal–porphyrin complexes revealed that the insertion of Ni and Zn ions decreased the thermal ROP temperatures of the Por-BZ/Ni and Por-BZ/Zn complexes significantly, to 241 and 231 °C, respectively. The metal ions acted as the effective promoter and catalyst for the thermal polymerization of the Por-BZ monomer, and also improved the thermal stabilities after thermal polymerization.
Collapse
|
9
|
Lu Y, Yu X, Han L, Zhang K. Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins. Polymers (Basel) 2021; 13:1417. [PMID: 33925643 PMCID: PMC8124165 DOI: 10.3390/polym13091417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/02/2022] Open
Abstract
With the growing demand for high performance polymeric materials in industry, several types of thermosets such as bismaleimides, advanced epoxy resins, cyanate esters, and phenolic resins have been widely investigated to improve the performance of thermosetting products. Among them, benzoxazine resins have received wide attention due to their extraordinarily rich molecular design flexibility, which can customize our needs and adapt increasing requirements. To further improve the properties of polybenzoxiazines, researchers have found that the introduction of a norbornene functional group into the benzoxazine moiety can effectively improve the comprehensive performance of polybenzoxazine thermosets. This article focused on reviewing the recent development of high-performance thermosets based on norbornene functional benzoxazine thermosetting resins.
Collapse
Affiliation(s)
- Yin Lu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.L.); (X.Y.)
| | - Xinye Yu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.L.); (X.Y.)
| | - Lu Han
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37831, USA
| | - Kan Zhang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.L.); (X.Y.)
| |
Collapse
|
10
|
Directly synthesized nitrogen-and-oxygen–doped microporous carbons derived from a bio-derived polybenzoxazine exhibiting high-performance supercapacitance and CO2 uptake. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109954] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Ipek H, Hacaloglu J. The effect of 3-hydroxyphenylboronic acid on thermal characteristics of polybenzoxazine based on phenol and 4-aminomethylbenzoate. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02221-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|