1
|
Swidan MM, Essa BM, Sakr TM. Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
Nanomedicine offers great potentials for theranostic studies via providing higher efficacy and safety levels. This work aimed to develop and evaluate a new nanoplatform as a tumor theranostic probe.
Results
Carboxyl-functionalized graphene oxide nanosheets (FGO) was well synthesized from graphite powder and then conjugated with folic acid to act as a targeted nano-probe. Full characterization and in vitro cytotoxicity evaluation were conducted; besides, in vivo bio-evaluation was attained via intrinsic radioiodination approach in both normal and tumor-bearing Albino mice. The results indicated that FGO as well as conjugated graphene oxide nanosheets (CGO) are comparatively non-toxic to normal cells even at higher concentrations. Pharmacokinetics of FGO and CGO showed intensive and selective uptake in the tumor sites where CGO showed high T/NT of 7.27 that was 4 folds of FGO at 1 h post injection. Additionally, radioiodinated-CGO (ICGO) had declared a superior prominence over the previously published tumor targeted GO radiotracers regarding the physicochemical properties pertaining ability and tumor accumulation behavior.
Conclusions
In conclusion, ICGO can be used as a selective tumor targeting agent for cancer theranosis with aid of I-131 that has a maximum beta and gamma energies of 606.3 and 364.5 keV, respectively.
Collapse
|
2
|
Mahmoud AF, Aboumanei MH, Abd-Allah WH, Swidan MM, Sakr TM. New frontier radioiodinated probe based on in silico resveratrol repositioning for microtubules dynamic targeting. Int J Radiat Biol 2023; 99:281-291. [PMID: 35549606 DOI: 10.1080/09553002.2022.2078001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE As the 'de novo' drug discovery faces a highly attrition rates, drug repositioning procures a heighten concern in identifying novel uses for existing medications. This study aimed to fabricate radioiodinated resveratrol as a potent microtubules interfering agent for cancer theragnosis. METHODS Resveratrol was radiolabeled with radioactive iodine where the radioiodination efficiency was enlightened and the computational approaches were employed to investigate the affinity and specificity with tubulins. Furthermore, the in-vivo distribution and pharmacokinetic studies in normal and tumor induced mice were investigated. RESULTS The maximum radioiodination yield (94.6 ± 1.66) was achieved at optimum preparation parameters stated as 100 μg/mL of oxidizing agent, 100 μg/ml of resveratrol, reaction time of 30 min and reaction pH 5. The in silico studies showed that di-iodinated resveratrol (compound 6) exhibited the best binding score (-34.46) and interaction with the β-tubulin binding site. The in vivo distribution in tumor models revealed a significant accumulation (4.02% ID/g) in tumor lesion at 60 min p.i. The rate of drug elimination demonstrated a mono-exponential decline of radioactivity versus time in the blood. CONCLUSION Radioiodinated resveratrol revealed good microtubules targeting which render it as a novel theranostic probe for cancer management.
Collapse
Affiliation(s)
- Ashgan F Mahmoud
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed H Aboumanei
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt.,Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Sakr
- Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, Cairo, Egypt.,Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
3
|
Ebrahem EMM, Sayed GH, Gad GNA, Anwer KE, Selim AA. Histopathology, pharmacokinetics and estimation of interleukin-6 levels of Moringa oleifera leaves extract-functionalized selenium nanoparticles against rats induced hepatocellular carcinoma. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is one of the most dangerous cancers in all the world. This study focused on prevention and therapy of hepatocellular carcinoma (HCC) using Moringa oleifera extract combined with vitamin C and selenium in a nanoplatform (MO/asc.-Se-NPs).
Results
Full characterization of MO/asc.-Se-NPs was performed by using different analytical techniques (TEM, DLS, zeta-sizer), and its antioxidant capacity was measured by DPPH assay. Biodistribution study was performed with the aid of radiolabeling technique using technetium-99m in normal albino mice. HCC was induced in Wister albino rats to evaluate the efficiency of MO/asc.-Se-NPs in the treatment of HCC. The biomarker analysis (ALT, AST and ALB) shows improvement in its values in prevention and treated groups by using MO/asc.-Se NP. The levels of inflammatory marker interleukin 6 (IL6 tissue homogenate) was improved by decreasing its values in these two groups also. Histology section of tissue liver showed alleviation in treated and prevention groups.
Conclusions
In conclusion, MO/asc.-Se-NPs can be used as a potential agent for prevention and treatment of HCC after further preclinical studies.
Collapse
|
4
|
Lung Cancer-Targeted [131I]-Iodoshikonin as Theranostic Agent: Radiolabeling, In Vivo Pharmacokinetics and Biodistribution. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Exploitation of Aspergillus flavus synthesized copper oxide nanoparticles as a novel medical agent. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07637-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Radioiodination and in vivo assessment of the potential of newly synthesized pyrrolizine-5-carboxamides derivative in tumor model. Appl Radiat Isot 2020; 166:109369. [PMID: 32828009 DOI: 10.1016/j.apradiso.2020.109369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023]
Abstract
Recently, pyrrolizine derivatives have been reported to possess numerous anticancer activities. In a previous study, (EZ)-6-((4-chlorobenzylidene)-amino)-7-cyano-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine carboxamide (EZPCA) compound was synthesized and the cytotoxic activity of EZPCA toward COX-2 enzyme (overexpressed in cancer cells) was reported. In order to assess the suitability of this compound as a promising pilot structure for in vivo applications, EZPCA was radiolabeled with radioiodine-131 (131I) and various factors affecting radiolabeling process were studied. Quality control studies of [131I]iodo-EZPCA were performed using paper chromatography and HPLC was used as a co-chromatographic technique for confirming the radiochemical yield. Biodistribution studies of [131I]iodo-EZPCA were undertaken in normal and tumor bearing mice. The radiochemical yield percentage of [131I]iodo-EZPCA was 94.20 ± 0.12%. The biodistribution results showed evident tumor uptake of [131I]iodo-EZPCA with promising target/non-target (T/NT) ratios. As a conclusion, these data suggest that [131I]iodo-EZPCA had high binding efficiency, high tumor uptake and sufficient stability to be used be used in diagnostic studies.
Collapse
|
7
|
El-Ghareb WI, Swidan MM, Ibrahim IT, Abd El-Bary A, Tadros MI, Sakr TM. 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles ( 99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm 2020; 586:119514. [PMID: 32565281 DOI: 10.1016/j.ijpharm.2020.119514] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
The development of cancer theranostic nanomedicines is recommended to concurrently achieve and evaluate the therapeutic benefit and progress. The current work aims to develop gallic acid-gold nanoparticles (GA-Au NPs) as a theranostic probe for 99mTc-Doxorubicin (99mTc-DOX) based on the spatiotemporal release pattern induced intra-tumoral (IT) delivery. DOX-loaded GA-Au NPs were developed and identified via UV-Vis spectroscopy. The system was characterized for drug loading efficiency%, particle size, zeta potential, topography, in vitro DOX release and anti-proliferative activity against the MCF-7 cell-line. The factors influencing radiolabeling efficiency of DOX with 99mTc (DOX concentration, stannous chloride concentration, reaction time and pH) were optimized. The in vitro stability in mice serum and in vivo distribution studies in mice of 99mTc-DOX-loaded GA-Au NPs were investigated following IV and IT administration. Dox-loaded GA-Au NPs had a loading efficiency of 91%, a small particle size (≈50 nm), a promising zeta potential (-20 mV) and a sustained drug release profile at pH 5.3. GA-Au NPs exhibited increased anti-proliferative activity, with approximately a four-fold lower IC50 value (0.15 μg/ml) than free DOX. The optimized radiolabeling efficiency of 99mTc-DOX was ≈93%. It showed good physiological stability in mice serum for at least 8 h. The IT delivery of 99mTc-DOX-loaded GA-Au NPs in tumor-induced mice showed dramatic tumor accumulation. A maximum magnitude of 86.73%ID/g was achieved, at 15 min post-injection, with a target/non-target ratio of ≈56. 99mTc-DOX-loaded GA-Au NPs could be used for the selective IT delivery of a chemotherapeutic agent and an imaging agent to a target organ.
Collapse
Affiliation(s)
- Walaa I El-Ghareb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ismail T Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Pharmacology Department, College of Pharmacy, Al-Bayan University, 10006 Baghdad, Iraq
| | - Ahmed Abd El-Bary
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mina Ibrahim Tadros
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt; Radioisotopes Production Facility, Second Egyptian Research Reactor Complex, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
8
|
Nissan YM, Mohamed KO, Ahmed WA, Ibrahim DM, Sharaky MM, Sakr TM, Motaleb MA, Maher A, Arafa RK. New benzenesulfonamide scaffold-based cytotoxic agents: Design, synthesis, cell viability, apoptotic activity and radioactive tracing studies. Bioorg Chem 2020; 96:103577. [PMID: 31978683 DOI: 10.1016/j.bioorg.2020.103577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
A new series of thiazolidinone (5a-g), thiazinone (9a-g) and dithiazepinone (9a-g) heterocycles bearing a benzenesulfonamide scaffold was synthesized. Cytotoxicity of these derivatives was assessed against MCF-7, HepG2, HCT-116 and A549 cancer cell lines and activity was compared to the known cytotoxic agents doxorubicin and 5-FU where the most active compounds displayed better to nearly similar IC50 values to the reference compounds. For assessing selectivity, the most active derivatives against MCF-7, 5b, 5c and 5e, were also assessed against the normal breast cell line MCF-10 A where they demonstrated high selective cytotoxicity to cancerous cells over that to normal cells. Further, the effect of the most active compounds 5b-e on MCF-7 and HepG2 cell cycle phase distribution was assessed and the tested sulfonamide derivatives were found to induce accumulation of cells in the <2n phase. To further confirm apoptosis induction, caspase 8 and 9 levels in MCF-7 and HepG2 were evaluated before and after treatment with compounds 5b-e and were found to be significantly higher after exposure to the test agents. Since 5c was the most active, its effect on the cell cycle regulation was confirmed where it showed inhibition of the CDK2/cyclin E1. Finally, in vivo biodistribution study using radioiodinated-5c revealed a significant uptake and targeting ability into solid tumor in a xenograft mouse model.
Collapse
Affiliation(s)
- Yassin M Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Wafaa A Ahmed
- National Cancer Institute, Cancer Biology Department, Cairo University, Egypt
| | | | - Marwa M Sharaky
- National Cancer Institute, Cancer Biology Department, Cairo University, Egypt
| | - Tamer M Sakr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt; Radioactive Isotopes and Generator Department, Hot Labs Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt.
| | - Mohamed A Motaleb
- Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Ahmed Maher
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Reem K Arafa
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, 12578 Cairo, Egypt.
| |
Collapse
|
9
|
Omar SM, Abdel-Rashid RS, AlAssaly MK, Sakr TM. Adaptation of hard gelatin capsules for oral delivery of aqueous radiopharmaceuticals. Daru 2019; 27:295-305. [PMID: 31175641 PMCID: PMC6593003 DOI: 10.1007/s40199-019-00275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Oral administration of Iodine-131 (I-131) solutions causes high risk of contamination for patients and dispensers. The objective of the study was to adapt hard gelatin capsules (HGCs) for filling with radiopharmaceutical solutions without deformation. METHODS Polystyrene (PS) internally lining films with different thicknesses were used to protect HGCs. The insulated HGCs were evaluated for their physicochemical characteristics and rupturing time in different dissolution media. HGCs internally lined with PS were examined for withstand loading with different volumes and radioactivities of I-131 solutions. Radioactivity release was studied in deionized water and acidic media. Quality control of released I-131 was inspected for radiochemical purities. RESULTS There was a directly proportion between PS lining thickness and stability of HGCs after filling with 500 μl aqueous methylene blue solution. HGCs internally lined with PS 100 μm thickness withstand deformation for ˃ two months; however showed fast in-vitro rupturing time in different dissolution media. Internally lined HGCs loaded with different volumes and radioactivities of I-131 solutions resisted for one week without radioactive leakage. Yet, revealed complete release of I-131 after 20 min in dissolution media with great radiochemical purity. CONCLUSION The study promises safely I-131 aqueous solution delivery via adapted HGCs. Graphical abstract Oral administration of radiopharmaceuticals.
Collapse
Affiliation(s)
- Samia Mohamed Omar
- Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795 Egypt
| | - Rania Safaa Abdel-Rashid
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795 Egypt
| | | | - Tamer M. Sakr
- Faculty of Pharmacy, October University of Modern Sciences and Arts, Cairo, Egypt
- Radioactive Isotopes and Generators, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
10
|
Swidan MM, Khowessah OM, El-Motaleb MA, El-Bary AA, El-Kolaly MT, Sakr TM. Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99 m radionuclide: a potential molecular imaging probe for tumor diagnosis. ACTA ACUST UNITED AC 2019; 27:49-58. [PMID: 30706223 DOI: 10.1007/s40199-019-00241-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND The evolution of nanoparticles has gained prominence as platforms for developing diagnostic and/or therapeutic radiotracers. This study aims to develop a novel technique for fabricating a tumor diagnostic probe based on iron oxide nanoparticles excluding the utilization of chelating ligands. METHODS Tc-99 m radionuclide was loaded into magnetic iron oxide nanoparticles platform (MIONPs) by sonication. 99mTc-encapsulated MIONPs were fully characterized concerning particles size, charge, radiochemical purity, encapsulation efficiency, in-vitro stability and cytotoxicity. These merits were biologically evaluated in normal and solid tumor bearing mice via different delivery approaches. RESULTS 99mTc-encapsulated MIONPs probe was synthesized with average particle size 24.08 ± 7.9 nm, hydrodynamic size 52 nm, zeta potential -28 mV, radiolabeling yield 96 ± 0.83%, high in-vitro physiological stability, and appropriate cytotoxicity behavior. The in-vivo evaluation in solid tumor bearing mice revealed that the maximum tumor radioactivity accumulation (25.39 ± 0.57, 36.40 ± 0.59 and 72.61 ± 0.82%ID/g) was accomplished at 60, 60 and 30 min p.i. for intravenous, intravenous with physical magnet targeting and intratumoral delivery, respectively. The optimum T/NT ratios of 57.70, 65.00 and 87.48 were demonstrated at 60 min post I.V., I.V. with physical magnet targeting and I.T. delivery, respectively. These chemical and biological characteristics of our prepared nano-probe demonstrate highly advanced merits over the previously reported chelator mediated radiolabeled nano-formulations which reported maximum tumor uptakes in the scope of 3.65 ± 0.19 to 16.21 ± 2.56%ID/g. CONCLUSION Stabilized encapsulation of 99mTc radionuclide into MIONPs elucidates a novel strategy for developing an advanced nano-sized radiopharmaceutical for tumor diagnosis. Graphical abstract 99mTc-encapsulated MIONPs nanosized-radiopharmaceutical as molecular imaging probe for tumor diagnosis.
Collapse
Affiliation(s)
- Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Omnya M Khowessah
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, PO11562, Cairo, Egypt
| | - Mohamed Abd El-Motaleb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt
| | - Ahmed Abd El-Bary
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, PO11562, Cairo, Egypt
| | - Mohamed T El-Kolaly
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt. .,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern Sciences and Arts University, 6th October City, Egypt.
| |
Collapse
|
11
|
Intranasal drug delivery of iodo-haloperidol as a radiopharmaceutical brain imaging agent. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6359-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur J Pharm Sci 2018; 122:239-245. [DOI: 10.1016/j.ejps.2018.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/09/2023]
|
13
|
Ibrahim AB, Alaraby Salem M, Fasih TW, Brown A, Sakr TM. Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6013-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Radioiodinated esmolol as a highly selective radiotracer for myocardial perfusion imaging: In silico study and preclinical evaluation. Appl Radiat Isot 2018; 137:41-49. [DOI: 10.1016/j.apradiso.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022]
|
15
|
Nasr T, Bondock S, Rashed HM, Fayad W, Youns M, Sakr TM. Novel hydrazide-hydrazone and amide substituted coumarin derivatives: Synthesis, cytotoxicity screening, microarray, radiolabeling and in vivo pharmacokinetic studies. Eur J Med Chem 2018; 151:723-739. [PMID: 29665526 DOI: 10.1016/j.ejmech.2018.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
The current work presents the synthesis and biological evaluation of new series of coumarin hydrazide-hydrazone derivatives that showed in vitro broad spectrum antitumor activities against resistant pancreatic carcinoma (Panc-1), hepatocellular carcinoma (HepG2) and leukemia (CCRF) cell lines using doxorubicin as reference standard. Bromocoumarin hydrazide-hydrazone derivative (BCHHD) 11b showed excellent anticancer activity against all tested cancer cell lines. Enzyme assays showed that BCHHD 11b induced apoptosis due to activation of caspases 3/7. Moreover, 11b inhibited GST and CYP3A4 in a dose dependent manner and the induced cell death could be attributed to metabolic inhibition. Moreover, 11b microarray analysis showed significant up- and down-regulation of many genes in the treated cells related to apoptosis, cell cycle, tumor growth and suppressor genes. All of the above presents BCHHD 11b as a potent anticancer agent able to overcome drug resistance. In addition, compound 11b was able to serve as a chemical carrier for 99mTc and the in vivo biodistribution study of 99mTc-11b complex revealed a remarkable targeting ability of 99mTc into solid tumor showing that 99mTc-11b might be used as a promising radiopharmaceutical imaging agent for cancer.
Collapse
Affiliation(s)
- Tamer Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information, Egypt.
| | - Samir Bondock
- Department of Chemistry, Faculty of Science, Mansoura University, ET-35516, Mansoura, Egypt; Department of Chemistry, Faculty of Science, King Khalid University, 9004, Abha, Saudi Arabia
| | - Hassan M Rashed
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, P.O. Code 13759, Cairo, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Department, Hot Laboratories Centre, Atomic Energy Authority, P.O. Code 13759, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA), Giza, Egypt.
| |
Collapse
|
16
|
131 I-trazodone: preparation, quality control and in vivo biodistribution study by intranasal and intravenous routes as a hopeful brain imaging radiopharmaceutical. Rev Esp Med Nucl Imagen Mol 2017. [DOI: 10.1016/j.remnie.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Motaleb M, Ibrahim I, Sayyed M, Awad G. 131 I-trazodone: preparation, quality control and in vivo biodistribution study by intranasal and intravenous routes as a hopeful brain imaging radiopharmaceutical. Rev Esp Med Nucl Imagen Mol 2017; 36:371-376. [DOI: 10.1016/j.remn.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
|
18
|
Nano-titania: a novel purification and concentration adsorbent for 125I production for medical uses. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
99mTc-hexoprenaline and 131I-dapoxetine: preparation, in silico modeling and biological evaluation as promising lung scintigraphy radiopharmaceuticals. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5500-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|