1
|
Kręcisz P, Stefańska K, Studziński J, Pitucha M, Czylkowska A, Szymański P. Radiocopper in Radiopharmacy and Medical Use: Current Status and Perspective. J Med Chem 2025; 68:2356-2376. [PMID: 39895089 PMCID: PMC11831595 DOI: 10.1021/acs.jmedchem.4c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Of the 32 known copper isotopes, some have interesting properties for nuclear medicine, for example the short-lived 60Cu, 61Cu, 62Cu, the moderate long-lived 64Cu and the long-lived 67Cu. Due to their emission properties, copper isotopes are suitable for both imaging diagnostics (60Cu, 61Cu, 62Cu, 64Cu) and targeted radiotherapy (64Cu and 67Cu). As their chemical properties are virtually identical, a single radiopharmaceutical structure can be labeled with different isotopes, depending on the clinical application. This, combined with the ability to combine radioisotopes with different nuclear properties with the same ligand, makes them extremely versatile. The purpose of this review is to introduce the world of copper radiopharmaceuticals and to summarize recent advances in methods for producing copper radioisotopes and the preclinical research of radiopharmaceuticals labeled with copper radioisotopes.
Collapse
Affiliation(s)
- Paweł Kręcisz
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Katarzyna Stefańska
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Jakub Studziński
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Monika Pitucha
- Independent
Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Agnieszka Czylkowska
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Paweł Szymański
- Department
of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty
of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
- Department
of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
2
|
Mikhail MAG, Kin T, Eto T, Tsukada K. Improved extraction efficiency of radioactive copper produced via accelerator neutrons method through phosphate buffer-enhanced column pre-treatment. Sci Rep 2024; 14:27132. [PMID: 39511320 PMCID: PMC11543818 DOI: 10.1038/s41598-024-76660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
We report a straightforward and robust method for isolating medical copper radioisotopes 64Cu and 67Cu, generated by an accelerator neutrons technique from natZn(n, x). This study reveals the key role of a phosphate buffer pre-treatment of the cation exchange column in the separation process. Incorporating the phosphate buffer into the column pre-treatment markedly enhances the retention of copper isotopes within the column throughout the separation procedure. This approach yields a remarkably high-purity radioactive copper sample with a high extraction efficiency of 94.4 (1.5) % of the initially produced copper, all within a relatively short experimental timeframe of approximately 5 h for 100 g of starting material. This single-step separation scheme is reproducible across a range of starting material target sizes, from small (10 g) to large (100 g). The copper radioisotopes obtained are suitable for use in pre-clinical studies. Thus, this approach offers a more effective means for routine preparation of copper radioisotopes.
Collapse
Affiliation(s)
- Mary Alfonse George Mikhail
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga Koen, Kasuga, 816-8580, Fukuoka, Japan.
| | - Tadahiro Kin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga Koen, Kasuga, 816-8580, Fukuoka, Japan
| | - Taisei Eto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga Koen, Kasuga, 816-8580, Fukuoka, Japan
| | - Kazuaki Tsukada
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki, 319-1195, Japan
| |
Collapse
|
3
|
Dellepiane G, Casolaro P, Gottstein A, Mateu I, Scampoli P, Braccini S. Optimized production of 67Cu based on cross section measurements of 67Cu and 64Cu using an 18 MeV medical cyclotron. Appl Radiat Isot 2023; 195:110737. [PMID: 36863264 DOI: 10.1016/j.apradiso.2023.110737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
RadioNuclide Therapy (RNT) in nuclear medicine is a cancer treatment based on the administration of radioactive substances that specifically target cancer cells in the patient. These radiopharmaceuticals consist of tumor-targeting vectors labeled with β-, α, or Auger electron-emitting radionuclides. In this framework, 67Cu is receiving increasing interest as it provides β--particles accompanied by low-energy γ radiation. The latter allows to perform Single Photon Emission Tomography (SPECT) imaging for detecting the radiotracer distribution for an optimized treatment plan and follow-up. Furthermore, 67Cu could be used as therapeutic partner of the β+-emitters 61Cu and 64Cu, both currently under study for Positron Emission Tomography (PET) imaging, paving the way to the concept of theranostics. The major barrier to a wider use of 67Cu-based radiopharmaceutical is its lack of availability in quantities and qualities suitable for clinical applications. A possible but challenging solution is the proton irradiation of enriched 70Zn targets, using medical cyclotrons equipped with a solid target station. This route was investigated at the Bern medical cyclotron, where an 18 MeV cyclotron is in operation together with a solid target station and a 6-m-long beam transfer line. The cross section of the involved nuclear reactions were accurately measured to optimize the production yield and the radionuclidic purity. Several production tests were performed to confirm the obtained results.
Collapse
Affiliation(s)
- Gaia Dellepiane
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.
| | - Pierluigi Casolaro
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Alexander Gottstein
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Isidre Mateu
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Paola Scampoli
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland; Department of Physics "Ettore Pancini", University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| | - Saverio Braccini
- Albert Einstein Center for Fundamental Physics (AEC), Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| |
Collapse
|
4
|
Microfluidic Solvent Extraction of No-Carrier-Added 64Cu from Irradiated Zn target for Radiopharmaceutical Preparation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Mou L, Martini P, Pupillo G, Cieszykowska I, Cutler CS, Mikołajczak R. 67Cu Production Capabilities: A Mini Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051501. [PMID: 35268600 PMCID: PMC8912090 DOI: 10.3390/molecules27051501] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
Is the 67Cu production worldwide feasible for expanding preclinical and clinical studies? How can we face the ingrowing demands of this emerging and promising theranostic radionuclide for personalized therapies? This review looks at the different production routes, including the accelerator- and reactor-based ones, providing a comprehensive overview of the actual 67Cu supply, with brief insight into its use in non-clinical and clinical studies. In addition to the most often explored nuclear reactions, this work focuses on the 67Cu separation and purification techniques, as well as the target material recovery procedures that are mandatory for the economic sustainability of the production cycle. The quality aspects, such as radiochemical, chemical, and radionuclidic purity, with particular attention to the coproduction of the counterpart 64Cu, are also taken into account, with detailed comparisons among the different production routes. Future possibilities related to new infrastructures are included in this work, as well as new developments on the radiopharmaceuticals aspects.
Collapse
Affiliation(s)
- Liliana Mou
- Legnaro National Laboratories, National Institute for Nuclear Physics, Legnaro, 35020 Padova, Italy; (L.M.); (G.P.)
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; or
| | - Gaia Pupillo
- Legnaro National Laboratories, National Institute for Nuclear Physics, Legnaro, 35020 Padova, Italy; (L.M.); (G.P.)
| | - Izabela Cieszykowska
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland;
| | - Cathy S. Cutler
- Brookhaven National Laboratory, Collider Accelerator Department, Upton, NY 11973, USA;
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland;
- Correspondence:
| |
Collapse
|
6
|
Fan FL, Li HW, Cheng NW, Huang QG, Chen DS, Wu XL, Qin Z. Selective adsorption and separation of Cu(II) from Zn solution by CU resin. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Large scale production of 64Cu and 67Cu via the 64Zn(n, p)64Cu and 68Zn(n, np/d)67Cu reactions using accelerator neutrons. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07987-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Jin ZH, Tsuji AB, Degardin M, Sugyo A, Obara S, Wakizaka H, Nagatsu K, Hu K, Zhang MR, Dumy P, Boturyn D, Higashi T. Radiotheranostic Agent 64Cu-cyclam-RAFT-c(-RGDfK-) 4 for Management of Peritoneal Metastasis in Ovarian Cancer. Clin Cancer Res 2020; 26:6230-6241. [PMID: 32933998 DOI: 10.1158/1078-0432.ccr-20-1205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Ovarian cancer peritoneal metastases (OCPMs) are a pathophysiologically heterogeneous group of tumors that are rarely curable. αVβ3 integrin (αVβ3) is overexpressed on tumoral neovessels and frequently on ovarian cancer cells. Here, using two clinically relevant αVβ3-positive OCPM mouse models, we studied the theranostic potential of an αVβ3-specific radiopeptide, 64Cu-cyclam-RAFT-c(-RGDfK-)4 (64Cu-RaftRGD), and its intra- and intertumoral distribution in relation to the tumor microenvironment. EXPERIMENTAL DESIGN αVβ3-expressing peritoneal and subcutaneous models of ovarian carcinoma (IGR-OV1 and NIH:OVCAR-3) were established in nude mice. 64Cu-RaftRGD was administered either intravenously or intraperitoneally. We performed intratumoral distribution (ITD) studies, PET/CT imaging and quantification, biodistribution assay and radiation dosimetry, and therapeutic efficacy and toxicity studies. RESULTS Intraperitoneal administration was an efficient route for targeting 64Cu-RaftRGD to OCPMs with excellent tumor penetration. Using the fluorescence surrogate, Cy5.5-RaftRGD, in our unique high-resolution multifluorescence analysis, we found that the ITD of 64Cu-RaftRGD was spatially distinct from, but complementary to, that of hypoxia. 64Cu-RaftRGD-based PET enabled clear visualization of multiple OCPM deposits and ascites and biodistribution analysis demonstrated an inverse correlation between tumor uptake and tumor size (1.2-17.2 mm). 64Cu-RaftRGD at a radiotherapeutic dose (148 MBq/0.357 nmol) showed antitumor activities by inhibiting tumor cell proliferation and inducing apoptosis, with negligible toxicity. CONCLUSIONS Collectively, these results demonstrate the all-in-one potential of 64Cu-RaftRGD for imaging guided radiotherapy of OCPM by targeting both tumoral neovessels and cancerous cells. On the basis of the ITD finding, we propose that pairing αVβ3- and hypoxia-targeted radiotherapies could improve therapeutic efficacy by overcoming the heterogeneity of ITD encountered with single-agent treatments.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | | | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Satoshi Obara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hidekatsu Wakizaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kotaro Nagatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kuan Hu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | | | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
9
|
Jalilian AR, Osso JA, Vera-Araujo J, Kumar V, Harris MJ, Gutfilen B, Guérin B, Li H, Zhuravlev F, Chakravarty R, Alirezapour B, Ávila-Rodríguez MA, Khan IU, Aljammaz I, Assaad T, Luurtsema G, Smith J, Duatti A. IAEA contribution to the development of 64Cu radiopharmaceuticals for theranostic applications. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:338-345. [PMID: 33026211 DOI: 10.23736/s1824-4785.20.03302-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper-64 is a very attractive radioisotope with unique nuclear properties that allow using it as both a diagnostic and therapeutic agent, thus providing an almost ideal example of a theranostic radionuclide. A characteristic of Cu-64 stems from the intrinsic biological nature of copper ions that play a fundamental role in a large number of cellular processes. Cu-64 is a radionuclide that reflects the natural biochemical pathways of Cu-64 ions, therefore, can be exploited for the detection and therapy of certain malignancies and metabolic diseases. Beside these applications of Cu-64 ions, this radionuclide can be also used for radiolabelling bifunctional chelators carrying a variety of pharmacophores for targeting different biological substrates. These include peptide-based substrates and immunoconjugates as well as small-molecule bioactive moieties. Fueled by the growing interest of Member States (MS) belonging to the International Atomic Energy Agency (IAEA) community, a dedicated Coordinated Research Project (CRP) was initiated in 2016, which recruited thirteen participating MS from four continents. Research activities and collaborations between the participating countries allowed for collection of an impressive series of results, particularly on the production, preclinical evaluation and, in a few cases, clinical evaluation of various 64Cu-radiopharmaceuticals that may have potential impact on future development of the field. Since this CRP was finalized at the beginning of 2020, this short review summarizes outcomes, outputs and results of this project with the purpose to propagate to other MS and to the whole scientific community, some of the most recent achievements on this novel class of theranostic 64Cu-pharmaceuticals.
Collapse
Affiliation(s)
- Amir R Jalilian
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Center, Vienna, Austria -
| | - Joao A Osso
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Center, Vienna, Austria
| | - Julia Vera-Araujo
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna International Center, Vienna, Austria
| | - Vijay Kumar
- Westmead Hospital, Westmead, Sydney, Australia
| | | | - Bianca Gutfilen
- Department of Radiology, Federal University of Rio de Janeiro, Laboratório de Marcação de Células e Moléculas (LMCM), Rio de Janeiro, Brazil
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS (CRCHUS), Centre d'Excellence en Imagerie Médicale (CIMUS), University of Sherbrooke, Sherbrooke, Canada
| | - Hongyu Li
- China Isotope and Radiation Corporation, Beijing, China
| | - Fedor Zhuravlev
- Hevesy Laboratory, Technical University of Denmark (DTU HEALTH TECH), Roskilde, Denmark
| | - Rubel Chakravarty
- Division of Radiopharmaceuticals, Bhabha Atomic Research Center, Mumbai, India
| | - Behrouz Alirezapour
- Radiation Applications Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Miguel A Ávila-Rodríguez
- Unit of Cyclotron and Radiopharmaceuticals, Division of Investigation, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Irfan U Khan
- Division of Cyclotron and Allied Radiopharmaceuticals, Institute of Nuclear Medicine and Oncology (INMOL), Lahore, Pakistan
| | - Ibrahim Aljammaz
- Department of Cyclotron and Radiopharmaceuticals, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Thaer Assaad
- Department of Radioisotope, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jeff Smith
- MU School of Medicine, University of Missouri, Columbia, MO, USA
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Synthesis of a metal-chelating polymer with NOTA pendants as a carrier for 64Cu, intended for radioimmunotherapy. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Ohya T, Nagatsu K, Hanyu M, Minegishi K, Zhang MR. Simple separation of 67Cu from bulk zinc by coprecipitation using hydrogen sulfide gas and silver nitrate. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
Copper-67 (67Cu), a feasible radionuclide for diagnosis and radiotherapy, is commercially generated from a bulk zinc (Zn) target using the 68Zn(p, 2p)67Cu and 68Zn(γ, p)67Cu nuclear reactions. Because it uses a large amount of zinc, the separation is complex – requiring a combination of three ion exchange columns – and is time-consuming (about 1 day). We developed a quick and easy separation method referred to as “double coprecipitation” using H2S gas and silver nitrate as coprecipitation agents in place of ion exchange columns. We compared this method with a conventional separation method using three ion exchange columns (AG50W-X8, AG1-X8, and Chelex-100) for a natural zinc (natZn) target irradiated by a proton beam. The product quality and the recovery rate with the new method were competitive with the conventional method, and the total operation time was reduced from 1 day to <3 h.
Collapse
Affiliation(s)
- Tomoyuki Ohya
- Department of Radiopharmaceuticals Development , National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Kotaro Nagatsu
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Masayuki Hanyu
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Katsuyuki Minegishi
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Ming-Rong Zhang
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| |
Collapse
|
12
|
Aliev RA, Belyshev SS, Kuznetsov AA, Dzhilavyan LZ, Khankin VV, Aleshin GY, Kazakov AG, Priselkova AB, Kalmykov SN, Ishkhanov BS. Photonuclear production and radiochemical separation of medically relevant radionuclides: 67Cu. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06576-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Souliotis GA, Rodrigues MRD, Wang K, Iacob VE, Nica N, Roeder B, Tabacaru G, Yu M, Zanotti-Fregonara P, Bonasera A. A novel approach to medical radioisotope production using inverse kinematics: A successful production test of the theranostic radionuclide 67Cu. Appl Radiat Isot 2019; 149:89-95. [PMID: 31035108 DOI: 10.1016/j.apradiso.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
A novel method for the production of important medical radioisotopes has been developed. The approach is based on performing the nuclear reaction in inverse kinematics, namely sending a heavy-ion beam of appropriate energy on a light target (e.g. H, d, He) and collecting the isotope of interest. In this work, as a proof-of-concept, we studied the production of the theranostic radionuclide 67Cu (T1/2 = 62 h) via the reaction of a 70Zn beam at 15 MeV/nucleon with a hydrogen gas target. The 67Cu radionuclide alongside other coproduced isotopes, was collected after the gas target on an aluminum catcher foil and their radioactivity was measured by off-line γ-ray analysis. After 36 h post irradiation, apart from the product of interest 67Cu, the main radioimpurity coming from the 70Zn + p reaction was 69mZn (T1/2 = 13.8 h), which can be reduced by further radio-cooling. Moreover, along with the radionuclide of interest produced in inverse kinematics, the production of additional radioisotopes is possible by making use of the forward-focused neutrons from the reaction and allowing them to interact with a secondary target. A preliminary successful test of this concept was realized in the present study. The main requirement to obtain activities appropriate for preclinical studies is the development of high-intensity heavy-ion primary beams.
Collapse
Affiliation(s)
- G A Souliotis
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece.
| | - M R D Rodrigues
- Cyclotron Institute, Texas A&M University, College Station, TX, 77843, USA; Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - K Wang
- Cyclotron Institute, Texas A&M University, College Station, TX, 77843, USA
| | - V E Iacob
- Cyclotron Institute, Texas A&M University, College Station, TX, 77843, USA
| | - N Nica
- Cyclotron Institute, Texas A&M University, College Station, TX, 77843, USA
| | - B Roeder
- Cyclotron Institute, Texas A&M University, College Station, TX, 77843, USA
| | - G Tabacaru
- Cyclotron Institute, Texas A&M University, College Station, TX, 77843, USA
| | - M Yu
- Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | - A Bonasera
- Cyclotron Institute, Texas A&M University, College Station, TX, 77843, USA; Laboratori Nazionali del Sud, INFN, Catania, 95123, Italy
| |
Collapse
|
14
|
Karimi Z, Sadeghi M, Ezati A. Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor. NUCLEAR ENGINEERING AND TECHNOLOGY 2019. [DOI: 10.1016/j.net.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
|
16
|
Yoshii Y, Yoshimoto M, Matsumoto H, Tashima H, Iwao Y, Takuwa H, Yoshida E, Wakizaka H, Yamaya T, Zhang MR, Sugyo A, Hanadate S, Tsuji AB, Higashi T. Integrated treatment using intraperitoneal radioimmunotherapy and positron emission tomography-guided surgery with 64Cu-labeled cetuximab to treat early- and late-phase peritoneal dissemination in human gastrointestinal cancer xenografts. Oncotarget 2018; 9:28935-28950. [PMID: 29989003 PMCID: PMC6034757 DOI: 10.18632/oncotarget.25649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/03/2018] [Indexed: 02/03/2023] Open
Abstract
Peritoneal dissemination is a common cause of death from gastrointestinal cancers and is difficult to treat using current therapeutic options, particularly late-phase disease. Here, we investigated the feasibility of integrated therapy using 64Cu-intraperitoneal radioimmunotherapy (ipRIT), alone or in combination with positron emission tomography (PET)-guided surgery using a theranostic agent (64Cu-labeled anti-epidermal growth factor receptor antibody cetuximab) to treat early- and late-phase peritoneal dissemination in mouse models. In this study, we utilized the OpenPET system, which has open space for conducting surgery while monitoring objects at high resolution in real time, as a novel approach to make PET-guided surgery feasible. 64Cu-ipRIT with cetuximab inhibited tumor growth and prolonged survival with little toxicity in mice with early-phase peritoneal dissemination of small lesions. For late-phase peritoneal dissemination, a combination of 64Cu-ipRIT for down-staging and subsequent OpenPET-guided surgery for resecting large tumor masses effectively prolonged survival. OpenPET clearly detected tumors (≥3 mm in size) behind other organs in the peritoneal cavity and was useful for confirming the presence or absence of residual tumors during an operation. These findings suggest that integrated 64Cu therapy can serve as a novel treatment strategy for peritoneal dissemination.
Collapse
Affiliation(s)
- Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba, Japan
| | | | - Hideaki Tashima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuma Iwao
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eiji Yoshida
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hidekatsu Wakizaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Taiga Yamaya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Hanadate
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
17
|
Jin ZH, Tsuji AB, Degardin M, Sugyo A, Yoshii Y, Nagatsu K, Zhang MR, Fujibayashi Y, Dumy P, Boturyn D, Higashi T. Uniform intratumoral distribution of radioactivity produced using two different radioagents, 64Cu-cyclam-RAFT-c(-RGDfK-) 4 and 64Cu-ATSM, improves therapeutic efficacy in a small animal tumor model. EJNMMI Res 2018; 8:54. [PMID: 29923139 PMCID: PMC6008272 DOI: 10.1186/s13550-018-0407-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background The present study proposed a new concept for targeted radionuclide therapy (TRT) to improve the intratumoral distribution of radioactivity using two different radiopharmaceuticals. We examined the efficacy of a combination of a tetrameric cyclic Arg-Gly-Asp (cRGD) peptide-based radiopharmaceutical, 64Cu-cyclam-RAFT-c(-RGDfK-)4 (64Cu-RaftRGD, an αVβ3 integrin [αVβ3] tracer), and 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM, a supposed tracer for hypoxic metabolism) in a small animal tumor model. Results Mice with subcutaneous αVβ3-positive U87MG glioblastoma xenografts were used. The intratumoral distribution of a near-infrared dye, Cy5.5-labeled RAFT-c(-RGDfK-)4 (Cy5.5-RaftRGD), 64Cu-RaftRGD, and 64Cu-ATSM was visualized by fluorescence imaging and autoradiography of the co-injected Cy5.5-RaftRGD with 64Cu-RaftRGD or 64Cu-ATSM at 3 h postinjection. Mice were treated with a single intravenous dose of the vehicle solution (control), 18.5 or 37 MBq of 64Cu-RaftRGD or 64Cu-ATSM, or a combination (18.5 MBq of each agent). The tumor volume, tumor cell proliferation, body weight, survival, and tumor and organ uptake of radiopharmaceuticals were assessed. It was shown that Cy5.5-RaftRGD colocalized with 64Cu-RaftRGD and could be used as a surrogate for the radioactive agent. The intratumoral distribution of Cy5.5-RaftRGD and 64Cu-ATSM was discordant and nearly complementary, indicating a more uniform distribution of radioactivity achievable with the combined use of 64Cu-RaftRGD and 64Cu-ATSM. Neither 64Cu-RaftRGD nor 64Cu-ATSM showed significant effects on tumor growth at 18.5 MBq. The combination of both (18.5 MBq each) showed sustained inhibitory effects against tumor growth and tumor cell proliferation and prolonged the survival of the mice, compared to that by either single agent at 37 MBq. Interestingly, the uptake of the combination by the tumor was higher than that of 64Cu-RaftRGD alone, but lower than that of 64Cu-ATSM alone. The kidneys showed the highest uptake of 64Cu-RaftRGD, whereas the liver exhibited the highest uptake of 64Cu-ATSM. No obvious adverse effects were observed in all treated mice. Conclusions The combination of 64Cu-RaftRGD and 64Cu-ATSM achieved an improved antitumor effect owing to the more uniform intratumoral distribution of radioactivity. Thus, combining different radiopharmaceuticals to improve the intratumoral distribution would be a promising concept for more effective and safer TRT. Electronic supplementary material The online version of this article (10.1186/s13550-018-0407-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan.
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Mélissa Degardin
- Département de Chimie Moléculaire-UMR CNRS 5250, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Kotaro Nagatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Yasuhisa Fujibayashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Pascal Dumy
- IBMM, UMR-5247, Université de Montpellier, CNRS, École Nationale Supérieure de Chimie de Montpellier, 34296, Montpellier Cedex 5, France
| | - Didier Boturyn
- Département de Chimie Moléculaire-UMR CNRS 5250, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
18
|
Karimi Z, Sadeghi M, Mataji-Kojouri N. 64Cu, a powerful positron emitter for immunoimaging and theranostic: Production via natZnO and natZnO-NPs. Appl Radiat Isot 2018; 137:56-61. [PMID: 29571037 DOI: 10.1016/j.apradiso.2018.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/17/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
64Cu is one of the most beneficial radionuclide that can be used as a theranostic agent in Positron Emission Tomography (PET) imaging. In this current work, 64Cu was produced with zinc oxide nanoparticles (natZnONPs) and zinc oxide powder (natZnO) via the 64Zn(n,p)64Cu reaction in Tehran Research Reactor (TRR) and the activity values were compared with each other. The theoretical activity of 64Cu also was calculated with MCNPX-2.6 and the cross sections of this reaction were calculated by using TALYS-1.8, EMPIRE-3.2.2 and ALICE/ASH nuclear codes and were compared with experimental values. Transmission Electronic Microscopy (TEM), Scanning Electronic Microscopy (SEM) and X-Ray Diffraction (XRD) analysis were used for samples characterizations. From these results, it's concluded that 64Cu activity value with nanoscale target was achieved more than the bulk state target and had a good adaptation with the MCNPX result.
Collapse
Affiliation(s)
- Zahra Karimi
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Science, P.O. Box: 14155-6183, Tehran, Iran.
| | - Naimeddin Mataji-Kojouri
- Nuclear Science & Technology Research Institute (NSTRI), Reactor and Nuclear Safety Research School, P.O. Box: 14395-836, Tehran, Iran
| |
Collapse
|
19
|
Gopalakrishna A, Suryanarayana SV, Naik H, Dixit TS, Nayak BK, Kumar A, Maletha P, Thakur K, Deshpande A, Krishnan R, Kamaldeep, Banerjee S, Saxena A. Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology. RADIOCHIM ACTA 2018. [DOI: 10.1515/ract-2017-2847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Experimental investigations have been carried out on the production of a promising therapeutic radionuclide 67Cu via the 67Zn(n,p)67Cu, 68Zn(n,x)67Cu, and 68Zn(γ,p)67Cu reaction routes. Natural zinc metal foils were irradiated with 14.1 MeV neutrons and bremsstrahlung of end-point energy 15 MeV. Radioactivity levels of 67Cu and other radioisotopes co-produced were determined by the quantification of photo-peaks by off-line γ-ray spectrometry. No carrier added 67Cu was separated from the irradiated zinc by solvent extraction. Yields >90% and high levels of radionuclidic purity were achieved. These studies indicate that the growth and development of intense fast neutron sources and photonuclear technology, will possibly aid in the sustained supply of 67Cu.
Collapse
Affiliation(s)
- Arjun Gopalakrishna
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology , Mumbai 400012 , India
- Physical and Mathematical Sciences, Homi Bhabha National Institute , Mumbai 400094 , India
| | | | - Haladhara Naik
- Radiochemistry Division, Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - Tanuja Sushant Dixit
- Society for Applied Microwave Electronics Engineering and Research, IIT Campus , Mumbai 400076 , India
| | - Basant Kumar Nayak
- Nuclear Physics Division, Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - Amit Kumar
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology , Mumbai 400012 , India
| | - Pravind Maletha
- Radiation Medicine Centre, Bhabha Atomic Research Centre , Mumbai 400 012 , India
| | - Kiran Thakur
- Society for Applied Microwave Electronics Engineering and Research, IIT Campus , Mumbai 400076 , India
| | - Abhay Deshpande
- Society for Applied Microwave Electronics Engineering and Research, IIT Campus , Mumbai 400076 , India
| | - Ramamoorthy Krishnan
- Society for Applied Microwave Electronics Engineering and Research, IIT Campus , Mumbai 400076 , India
| | - Kamaldeep
- Radiation Medicine Centre, Bhabha Atomic Research Centre , Mumbai 400 012 , India
| | - Sharmila Banerjee
- Radiation Medicine Centre, Bhabha Atomic Research Centre , Mumbai 400 012 , India
| | - Alok Saxena
- Nuclear Physics Division, Bhabha Atomic Research Centre , Mumbai 400085 , India
| |
Collapse
|
20
|
Zandi N, Afarideh H, Aboudzadeh MR, Rajabifar S. Study on a new design of Tehran Research Reactor for radionuclide production based on fast neutrons using MCNPX code. Appl Radiat Isot 2017; 132:67-71. [PMID: 29169062 DOI: 10.1016/j.apradiso.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 11/16/2022]
Abstract
The aim of this work is to increase the magnitude of the fast neutron flux inside the flux trap where radionuclides are produced. For this purpose, three new designs of the flux trap are proposed and the obtained fast and thermal neutron fluxes compared with each other. The first and second proposed designs were a sealed cube contained air and D2O, respectively. The results of calculated production yield all indicated the superiority of the latter by a factor of 55% in comparison to the first proposed design. The third proposed design was based on changing the surrounding of the sealed cube by locating two fuel plates near that. In this case, the production yield increased up to 70%.
Collapse
Affiliation(s)
- Nadia Zandi
- Department of Energy engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Afarideh
- Department of Energy engineering and Physics, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Reza Aboudzadeh
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran
| | - Saeed Rajabifar
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 14395-836, Tehran, Iran
| |
Collapse
|
21
|
67Cu-Radiolabeling of a multimeric RGD peptide for αVβ3 integrin-targeted radionuclide therapy. Nucl Med Commun 2017; 38:347-355. [DOI: 10.1097/mnm.0000000000000646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Auditore L, Amato E, Baldari S. Theoretical estimation of 64Cu production with neutrons emitted during 18F production with a 30MeV medical cyclotron. Appl Radiat Isot 2017; 122:229-234. [PMID: 28209500 DOI: 10.1016/j.apradiso.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/13/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE This work presents the theoretical estimation of a combined production of 18F and 64Cu isotopes for PET applications. 64Cu production is induced in a secondary target by neutrons emitted during a routine 18F production with a 30MeV cyclotron: protons are used to produce 18F by means of the 18O(p,n)18F reaction on a [18O]-H2O target (primary target) and the emitted neutrons are used to produce 64Cu by means of the 64Zn(n,p)64Cu reaction on enriched zinc target (secondary target). METHODS Monte Carlo simulations were carried out using Monte Carlo N Particle eXtended (MCNPX) code to evaluate flux and energy spectra of neutrons produced in the primary (Be+[18O]-H2O) target by protons and the attenuation of neutron flux in the secondary target. 64Cu yield was estimated using an analytical approach based on both TENDL-2015 data library and experimental data selected from EXFOR database. RESULTS Theoretical evaluations indicate that about 3.8 MBq/μA of 64Cu can be obtained as a secondary, 'side' production with a 30MeV cyclotron, for 2h of irradiation of a proper designed zinc target. Irradiating for 2h with a proton current of 120 μA, a yield of about 457 MBq is expected. Moreover, the most relevant contaminants result to be 63,65Zn, which can be chemically separated from 64Cu contrarily to what happens with proton irradiation of an enriched 64Ni target, which provides 64Cu mixed to other copper isotopes as contaminants. CONCLUSIONS The theoretical study discussed in this paper evaluates the potential of the combined production of 18F and 64Cu for medical purposes, irradiating a properly designed target with 30MeV protons. Interesting yields of 64Cu are obtainable and the estimation of contaminants in the irradiated zinc target is discussed.
Collapse
Affiliation(s)
- Lucrezia Auditore
- Nuclear Medicine Unit, University Hospital "G. Martino", Messina, Italy; INFN - Istituto Nazionale di Fisica Nucleare, Messina, Italy.
| | - Ernesto Amato
- INFN - Istituto Nazionale di Fisica Nucleare, Messina, Italy; Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sergio Baldari
- Nuclear Medicine Unit, University Hospital "G. Martino", Messina, Italy; Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Cohen IM, Segovia MS, Bedregal PS, Mendoza PA, Aguirre AR, Montoya EH. A novel method for determination of copper in zinc destined to 64Cu production in a nuclear reactor. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-015-4678-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|