1
|
Bi C, Zhang C, Wang C, Zhu L, Zhu R, Liu L, Wang Y, Ma F, Dong H. Construction of oxime-functionalized PCN-222 based on the directed molecular structure design for recovering uranium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16554-16570. [PMID: 38319420 DOI: 10.1007/s11356-024-32208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.4 mg·g-1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the application. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient adsorbent.
Collapse
Affiliation(s)
- Changlong Bi
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
| | - Lien Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Ruiqi Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Fuqiu Ma
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| |
Collapse
|
2
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
3
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Smječanin N, Nuhanović M, Sulejmanović J, Mašić E, Sher F. Highly effective sustainable membrane based cyanobacteria for uranium uptake from aqueous environment. CHEMOSPHERE 2023; 313:137488. [PMID: 36528157 DOI: 10.1016/j.chemosphere.2022.137488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Wastewater from industrial process of uranium ore mining contains a large amount of this radioactive pollutant. Regarding the advantages of biosorption, it was found that varieties of biomasses such as agricultural waste, algae and fungi are effective for uranium removal. However, there is limited research on cyanobacteria, therefore, cyanobacteria, Anagnostidinema amphibium (CAA) was investigated by batch method for the first time for biosorption of uranium (VI). Optimization of biosorption parameters showed that maximum removal efficiency of 92.91% was reached at pH range of 9-11 with 50 mg of cyanobacteria to 100 mg/L U(VI) initial concentration, at 25 °C within 40 min. Used biosorbent exhibited very good selectivity for U(VI) ions and reusability in IV sorption/desorption cycles. Characterization of CAA surface was performed by FTIR, EDS, EDXRF and SEM analysis and it has shown various functional groups (CONH, COOH, OH, PO alkyl group) and that it is very rich in elements such as iron, potassium and calcium. In binary systems, contained of U(VI) and selected ions, CAA exhibits very good selectivity towards U(VI) ions. Kinetic data revealed the best accordance of experimental data with the pseudo-second-order model and isotherms data agreed with Freundlich model. Thermodynamic data implied that U(VI) biosorption process by A. amphibium exhibited spontaneity and modelling of the investigated process showed that the adsorption of uranium ions occurs mainly via peptidoglycan carboxyl groups. Overall results show that these cyanobacteria with a maximum sorption capacity of 324.94 mg/g have great potential for the processing of wastewater polluted with uranium (VI).
Collapse
Affiliation(s)
- Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Mirza Nuhanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ermin Mašić
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
5
|
He Y, Bao W, Li B, Fu X, Na B, Yuan D. Highly efficient removal of uranium from aqueous solution by a novel robust phosphonic acid functionalized aromatic-based hyper-crosslinked porous polymer. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Luo Q, Jin T, huang J, Liu Z, Huang D, Qian Y. Porous phytic acid-doped sodium alginate aerogels as the electrode material for the electrosorption of uranium from acidic solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhang X, Zhang J, Peng Y, Wu X, Li M, Wen H, Sun Z, Ye J, Hua Y. Synergistic removal of glyphosate and U(VI) from aqueous solution by goethite: adsorption behaviour and mechanism. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
|
9
|
Kanjilal A, Singh KK, Tyagi AK, Dey GR. Synthesis of bi-functional chelating sorbent for recovery of uranium from aqueous solution: sorption, kinetics and reusability studies. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02819-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Preparation of NH2-CTS/MZ composites and their adsorption behavior and mechanism on uranium ions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07991-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Fe3O4-modified sewage sludge biochar for U(VI) removal from aqueous solution: performance and mechanism. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07782-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Facile synthesis of 2,5-dihydroxy-1,4-benzoquinone glyoxal resin with high capacity and selectivity for uranium recovery in aqueous solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Preparation of amino-functionalized starch-based adsorbent and its adsorption behavior for uranyl ions. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07733-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Celikbıcak O, Bayramoglu G, Acıkgoz-Erkaya I, Arica MY. Aggrandizement of uranium (VI) removal performance of Lentinus concinnus biomass by attachment of 2,5-diaminobenzenesulfonic acid ligand. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07708-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Pooladi H, Foroutan R, Esmaeili H. Synthesis of wheat bran sawdust/Fe 3O 4 composite for the removal of methylene blue and methyl violet. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:276. [PMID: 33860858 DOI: 10.1007/s10661-021-09051-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Magnetically modified nanomaterials have recently gained a great attention in wastewater treatment. In this study, the uptake process of methylene blue (MB) and methyl violet (MV) from aqueous media using wheat bran sawdust/Fe3O4 composite was studied. To specify the surface and structural properties of the wheat bran sawdust/Fe3O4 composite, various analyses such as FTIR, XRD, EDX, Map, TGA/DTG, SEM, VSM, and BET were performed. The results of BET analysis indicated that the specific surface area of the aforementioned composite was 74.25 m2/g, and the average pore size was 65.7A, which indicates that the composite has a mesoporous structure. Also, VSM analysis indicated that the composite has a paramagnetic property with a magnetic saturation of 28.29 emu/g and can be easily eliminated from the aqueous solution by a magnet. Moreover, the highest removal efficiency of MB and MV dyes using the wheat bran/Fe3O4 composite was obtained as 97.46 and 98.75%, respectively, which were significant values. These removal efficiencies were obtained at contact time of 50 min and pH values of 9 and 8 for MB and MV, respectively. Furthermore, the outcomes of equilibrium study showed that the Langmuir model with a correlation coefficient greater than 0.98 describes the equilibrium behavior of the uptake process better than the Freundlich and Dubinin-Radushkevich models. Besides, the maximum sorption capacity of MV and MB dyes using the Langmuir model was obtained as 46.08 and 51.28 mg/g, respectively. Also, the uptake process followed the pseudo-second-order kinetic model, and the thermodynamic study indicated that the uptake process is exothermic and spontaneous.
Collapse
Affiliation(s)
- Hossein Pooladi
- Department of Chemical Engineering, Dashtestan Branch, Islamic Azad University, Dashtestan, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
16
|
Zhu M, Liu L, Feng J, Dong H, Zhang C, Ma F, Wang Q. Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Beni AA. Design of a solar reactor for the removal of uranium from simulated nuclear wastewater with oil-apatite ELM system. ARAB J CHEM 2021; 14:102959. [DOI: 10.1016/j.arabjc.2020.102959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
|
19
|
Esmaeili H, Tamjidi S. Ultrasonic-assisted synthesis of natural clay/Fe 3O 4/graphene oxide for enhance removal of Cr (VI) from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31652-31664. [PMID: 32500498 DOI: 10.1007/s11356-020-09448-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/25/2020] [Indexed: 05/21/2023]
Abstract
In this study, Fe3O4/graphene oxide (GO)/clay composite was used to remove chromium (VI) ion from aqueous media. The structure and characteristics of the Fe3O4/GO/clay composite were investigated using FT-IR, SEM, EDX/Map, VSM, BET, and XRD analyses. The BET analysis indicated that the specific surface area and mean pore size of the Fe3O4/GO/clay composite were calculated as 61.64 m2/g and 16.2 nm respectively, which indicate that the composite has a mesoporous structure. Also, the VSM analysis showed that the Fe3O4/GO/clay composite has a superparamagnetic property. Moreover, the highest removal efficiency of Cr (VI) from aqueous media was obtained to be 98.84%, which achieved at pH 3, Cr (VI) ion concentration of 10 mg/L, the composite dosage of 1 g/L, contact time of 60 min, and temperature of 25 °C. Furthermore, the kinetic and equilibrium studies showed that the quasi second-order kinetic model and the Langmuir model could better describe the sorption behavior of the clay and the Fe3O4/clay composite, while the behavior of the Fe3O4/GO/clay composite can be better explained by the Freundlich model. Besides, the maximum sorption capacities of the clay, Fe3O4/clay, and Fe3O4/GO/clay composite were obtained to be 49.61, 62.26, and 71.47 mg/g, respectively, which shows that the maximum sorption capacity of the clay increases with improving the surface properties of the clay. Also, the thermodynamic study indicated that the Cr (VI) sorption process was exothermic and spontaneous in nature. In general, the results indicated that the Fe3O4/GO/clay composite was more effective than the clay and the Fe3O4/clay in Cr (VI) ion removal.
Collapse
Affiliation(s)
- Hossein Esmaeili
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Sajad Tamjidi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
20
|
Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Preparation of a 3D multi-branched chelate adsorbent for high selective adsorption of uranium(VI): Acrylic and diaminomaleonitrile functionalized waste hemp fiber. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Mrudula MS, Gopinathan Nair MRP. Studies on the Complexation of 3d Transition Metal Ions with NR/PEO Block Copolymer in Aqueous Medium. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Nuhanović M, Grebo M, Draganović S, Memić M, Smječanin N. Uranium(VI) biosorption by sugar beet pulp: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06877-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Polyaniline/oxidation etching graphitic carbon nitride composites for U(VI) removal from aqueous solutions. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06660-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Highly efficient uranium(VI) removal from aqueous solution using poly(cyclotriphosphazene-co-4,4′-diaminodiphenyl-ether) crosslinked microspheres. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06681-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Bayramoglu G, Arica MY. Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.04.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Foroutan R, Mohammadi R, Razeghi J, Ramavandi B. Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101509] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Zhou Y, Yan C, Zhou S, Liang T, Wen X. Preparation of montmorillonite grafted polyacrylic acid composite and study on its adsorption properties of lanthanum ions from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9861-9875. [PMID: 30734258 DOI: 10.1007/s11356-019-04422-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Montmorillonite grafted polyacrylic acid composite (GNM) was prepared by using ultraviolet radiation grafting method in this work. The synthesized materials were characterized by XRF, SEM, FTIR, XRD, TG, and XPS. The experimental equilibrium data indicates that the adsorbent is suitable for the Langmuir model and belongs to the pseudo-second-order kinetic model. The entire adsorption process is spontaneous, endothermic, and chaotically enhanced by thermodynamic analysis. The maximum adsorption capacity of La(III) by GNM was 280.54 mg/g at 313.15 K. In addition, the regeneration experiment shows that the adsorbent has good reusability and stable desorption efficiency. This study demonstrates that GNM has high adsorption performance and La(III) adsorption and regeneration capabilities to solve the water pollution caused by rare earth ions and regeneration capabilities for La(III).
Collapse
Affiliation(s)
- Yunfei Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Chunjie Yan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Sen Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Tian Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xue Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
29
|
Shafiee M, Foroutan R, Fouladi K, Ahmadlouydarab M, Ramavandi B, Sahebi S. Application of oak powder/Fe3O4 magnetic composite in toxic metals removal from aqueous solutions. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2018.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Zhong C, Su S, Xu L, Liu Q, Zhang H, Yang P, Zhang M, Bai X, Wang J. Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Madbouly H, El-Hefny N, El-Nadi Y. Adsorption and separation of terbium(III) and gadolinium(III) from aqueous nitrate medium using solid extractant. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1563614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- H.A. Madbouly
- Hot Laboratories Centre, Atomic Energy Authority, Qalyubia, Egypt
| | - N.E. El-Hefny
- Hot Laboratories Centre, Atomic Energy Authority, Qalyubia, Egypt
| | - Y.A. El-Nadi
- Hot Laboratories Centre, Atomic Energy Authority, Qalyubia, Egypt
| |
Collapse
|
32
|
Kanjilal A, Singh KK, Bairwa KK, Kumar M. Synthesis and study of optimization of amidoximated PAN‐DVB‐EGDMA beads for the sorption of uranium from aqueous media. POLYM ENG SCI 2018. [DOI: 10.1002/pen.25033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Amit Kanjilal
- Radiation and Photochemistry DivisionBhabha Atomic Research Centre, TrombayMumbaiIndia
| | - Krishan Kant Singh
- Radiation and Photochemistry DivisionBhabha Atomic Research Centre, TrombayMumbaiIndia
| | - Kamlesh K. Bairwa
- Radiation and Photochemistry DivisionBhabha Atomic Research Centre, TrombayMumbaiIndia
| | - Manmohan Kumar
- Radiation and Photochemistry DivisionBhabha Atomic Research Centre, TrombayMumbaiIndia
| |
Collapse
|
33
|
Liang L, Lin X, Sun S, Chen Y, Shang R, Luo X. Stereoscopic porous gellan gum-based microspheres as high performance adsorbents for U(VI) removal. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6323-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Šabanović E, Muhić-Šarac T, Nuhanović M, Memić M. Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6358-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Saghatchi H, Ansari R, Mousavi HZ. Highly efficient adsorptive removal of uranyl ions from aqueous solutions using dicalcium phosphate nanoparticles as a superabsorbent. NUCLEAR ENGINEERING AND TECHNOLOGY 2018. [DOI: 10.1016/j.net.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Lu T, Zhu Y, Wang W, Qi Y, Wang A. Polyaniline-functionalized porous adsorbent for Sr2+ adsorption. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5935-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Liu S, Ouyang J, Luo J, Sun L, Huang G, Ma J. Removal of uranium(VI) from aqueous solution using graphene oxide functionalized with diethylenetriaminepentaacetic phenylenediamine. J NUCL SCI TECHNOL 2018. [DOI: 10.1080/00223131.2018.1439415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shujuan Liu
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| | - Jinxiu Ouyang
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| | - Jianqiang Luo
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| | - Lei Sun
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| | - Guolin Huang
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| | - Jianguo Ma
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, China
| |
Collapse
|
38
|
Synthesis and adsorption characteristics of calix[6]arene derivative modified Aspergillus niger-Fe3O4 bio-nanocomposite for U(VI). J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5736-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Wei X, Liu Q, Zhang H, Liu J, Chen R, Li R, Li Z, Liu P, Wang J. Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites. J Colloid Interface Sci 2018; 511:1-11. [DOI: 10.1016/j.jcis.2017.09.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022]
|
40
|
Linghu W, Sun Y, Yang H, Chang K, Ma J, Huang Y, Dong W, Alsaedi A, Hayat T. Sorption of U(VI) on magnetic sepiolite investigated by batch and XANES techniques. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5531-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
Sun S, Lin X, Wu L, Luo X. Sorption of uranium(VI) by La-Al-carboxymethyl konjac glucomannan microsphere sorbent. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Elsalamouny AR, Desouky OA, Mohamed SA, Galhoum AA, Guibal E. Evaluation of adsorption behavior for U(VI) and Nd(III) ions onto fumarated polystyrene microspheres. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5389-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Removal of metal complexed azo dyes from aqueous solution using tris(2-aminoethyl)amine ligand modified magnetic p(GMA-EGDMA) cationic resin: Adsorption, isotherm and kinetic studies. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5216-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|