1
|
Brunello S, Salvarese N, Carpanese D, Gobbi C, Melendez-Alafort L, Bolzati C. A Review on the Current State and Future Perspectives of [ 99mTc]Tc-Housed PSMA-i in Prostate Cancer. Molecules 2022; 27:molecules27092617. [PMID: 35565970 PMCID: PMC9099988 DOI: 10.3390/molecules27092617] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, prostate-specific membrane antigen (PSMA) has gained momentum in tumor nuclear molecular imaging as an excellent target for both the diagnosis and therapy of prostate cancer. Since 2008, after years of preclinical research efforts, a plentitude of radiolabeled compounds mainly based on low molecular weight PSMA inhibitors (PSMA-i) have been described for imaging and theranostic applications, and some of them have been transferred to the clinic. Most of these compounds include radiometals (e.g., 68Ga, 64Cu, 177Lu) for positron emission tomography (PET) imaging or endoradiotherapy. Nowadays, although the development of new PET tracers has caused a significant drop in single-photon emission tomography (SPECT) research programs and the development of new technetium-99m (99mTc) tracers is rare, this radionuclide remains the best atom for SPECT imaging owing to its ideal physical decay properties, convenient availability, and rich and versatile coordination chemistry. Indeed, 99mTc still plays a relevant role in diagnostic nuclear medicine, as the number of clinical examinations based on 99mTc outscores that of PET agents and 99mTc-PSMA SPECT/CT may be a cost-effective alternative for 68Ga-PSMA PET/CT. This review aims to give an overview of the specific features of the developed [99mTc]Tc-tagged PSMA agents with particular attention to [99mTc]Tc-PSMA-i. The chemical and pharmacological properties of the latter will be compared and discussed, highlighting the pros and cons with respect to [68Ga]Ga-PSMA11.
Collapse
Affiliation(s)
- Sara Brunello
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy; (S.B.); (N.S.)
| | - Nicola Salvarese
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy; (S.B.); (N.S.)
| | - Debora Carpanese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35124 Padova, Italy;
| | - Carolina Gobbi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | - Laura Melendez-Alafort
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35124 Padova, Italy;
- Correspondence: (L.M.-A.); (C.B.)
| | - Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti 4, 35127 Padova, Italy; (S.B.); (N.S.)
- Correspondence: (L.M.-A.); (C.B.)
| |
Collapse
|
2
|
Vahidfar N, Farzanehfar S, Abbasi M, Mirzaei S, Delpassand ES, Abbaspour F, Salehi Y, Biersack HJ, Ahmadzadehfar H. Diagnostic Value of Radiolabelled Somatostatin Analogues for Neuroendocrine Tumour Diagnosis: The Benefits and Drawbacks of [ 64Cu]Cu-DOTA-TOC. Cancers (Basel) 2022; 14:1914. [PMID: 35454822 PMCID: PMC9027354 DOI: 10.3390/cancers14081914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroendocrine tumours (NETs) arise from secondary epithelial cell lines in the gastrointestinal or respiratory system organs. The rate of development of these tumours varies from an indolent to an aggressive course, typically being initially asymptomatic. The identification of these tumours is difficult, particularly because the primary tumour is often small and undetectable by conventional anatomical imaging. Consequently, diagnosis of NETs is complicated and has been a significant challenge until recently. In the last 30 years, the advent of novel nuclear medicine diagnostic procedures has led to a substantial increase in NET detection. Great varieties of exclusive single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals for detecting NETs are being applied successfully in clinical settings, including [111In]In-pentetreotide, [99mTc]Tc-HYNIC-TOC/TATE, [68Ga]Ga-DOTA-TATE, and [64Cu]Cu-DOTA-TOC/TATE. Among these tracers for functional imaging, PET radiopharmaceuticals are clearly and substantially superior to planar or SPECT imaging radiopharmaceuticals. The main advantages include higher resolution, better sensitivity and increased lesion-to-background uptake. An advantage of diagnosis with a radiopharmaceutical is the capacity of theranostics to provide concomitant diagnosis and treatment with particulate radionuclides, such as beta and alpha emitters including Lutetium-177 (177Lu) and Actinium-225 (225Ac). Due to these unique challenges involved with diagnosing NETs, various PET tracers have been developed. This review compares the clinical characteristics of radiolabelled somatostatin analogues for NET diagnosis, focusing on the most recently FDA-approved [64Cu]Cu-DOTA-TATE as a state-of-the art NET-PET/CT radiopharmaceutical.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Saeed Farzanehfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Mehrshad Abbasi
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Siroos Mirzaei
- Clinic Ottakring, Institute of Nuclear Medicine with PET-Center, 1220 Vienna, Austria;
| | - Ebrahim S. Delpassand
- RadioMedix, Inc., Houston, TX 77041, USA;
- Excel Diagnostics and Nuclear Oncology Center, Houston, TX 77042, USA
| | - Farzad Abbaspour
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Yalda Salehi
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Hans Jürgen Biersack
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany;
- Betaklinik Bonn, 53227 Bonn, Germany
| | | |
Collapse
|
3
|
Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Biophys Rev 2022; 14:303-315. [PMID: 35340601 PMCID: PMC8921357 DOI: 10.1007/s12551-021-00919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent metalloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental and computational studies are being reviewed, in which we examined three functional groups on each group of structures. The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effective ligands are recommended.
Collapse
|
4
|
Petrov SA, Zyk NY, Machulkin AE, Beloglazkina EK, Majouga AG. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. Eur J Med Chem 2021; 225:113752. [PMID: 34464875 DOI: 10.1016/j.ejmech.2021.113752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
This review presents data on dual conjugates of therapeutic and diagnostic action for targeted delivery to prostate cancer cells. The works of the last ten years on this topic were analyzed. The mail attention focuses on low-molecular-weight conjugates directed to the prostate-specific membrane antigen (PSMA); the comparison of high and low molecular weight PSMA-targeted conjugates was made. The considered conjugates were divided in the review into two main classes: diagnostic bimodal conjugates (which are containing two fragments for different types of diagnostics), theranostic conjugates (containing both therapeutic and diagnostic agents); also bimodal high molecular weight therapeutic conjugates containing two therapeutic agents are briefly discussed. The data of in vitro and in vivo studies for PSMA-targeted double conjugates available by the beginning of 2021 have been analyzed.
Collapse
Affiliation(s)
- Stanislav A Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay Y Zyk
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia; Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
5
|
Vahidfar N, Eppard E, Farzanehfar S, Yordanova A, Fallahpoor M, Ahmadzadehfar H. An Impressive Approach in Nuclear Medicine: Theranostics. PET Clin 2021; 16:327-340. [PMID: 34053577 DOI: 10.1016/j.cpet.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Radiometal-based theranostics or theragnostics, first used in the early 2000s, is the combined application of diagnostic and therapeutic agents that target the same molecule, and represents a considerable advancement in nuclear medicine. One of the promising fields related to theranostics is radioligand therapy. For instance, the concepts of targeting the prostate-specific membrane antigen (PSMA) for imaging and therapy in prostate cancer, or somatostatin receptor targeted imaging and therapy in neuroendocrine tumors (NETs) are part of the field of theranostics. Combining targeted imaging and therapy can improve prognostication, therapeutic decision-making, and monitoring of the therapy.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elisabeth Eppard
- Positronpharma SA, Santiago, Chile; Department of Nuclear Medicine, University Hospital Magdeburg, Germany
| | - Saeed Farzanehfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Fallahpoor
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Vahidfar N, Aghanejad A, Ahmadzadehfar H, Farzanehfar S, Eppard E. Theranostic Advances in Breast Cancer in Nuclear Medicine. Int J Mol Sci 2021; 22:4597. [PMID: 33925632 PMCID: PMC8125561 DOI: 10.3390/ijms22094597] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
The implication of 'theranostic' refers to targeting an identical receptor for diagnostic and therapeutic purposes, by the same radioligand, simultaneously or separately. In regard to extensive efforts, many considerable theranostic tracers have been developed in recent years. Emerging evidence strongly demonstrates the tendency of nuclear medicine towards therapies based on a diagnosis. This review is focused on the examples of targeted radiopharmaceuticals for the imaging and therapy of breast cancer.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733141, Iran;
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | | | - Saeed Farzanehfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733141, Iran;
| | - Elisabeth Eppard
- Positronpharma SA. Rancagua 878, Santiago 7500621, Chile;
- Department of Nuclear Medicine, University Hospital Magdeburg, Leipziger Strass 44, 39120 Magdedurg, Germany
| |
Collapse
|
7
|
Juzeniene A, Stenberg VY, Bruland ØS, Larsen RH. Preclinical and Clinical Status of PSMA-Targeted Alpha Therapy for Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:779. [PMID: 33668474 PMCID: PMC7918517 DOI: 10.3390/cancers13040779] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Bone, lymph node, and visceral metastases are frequent in castrate-resistant prostate cancer patients. Since such patients have only a few months' survival benefit from standard therapies, there is an urgent need for new personalized therapies. The prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer and is a molecular target for imaging diagnostics and targeted radionuclide therapy (theragnostics). PSMA-targeted α therapies (PSMA-TAT) may deliver potent and local radiation more selectively to cancer cells than PSMA-targeted β- therapies. In this review, we summarize both the recent preclinical and clinical advances made in the development of PSMA-TAT, as well as the availability of therapeutic α-emitting radionuclides, the development of small molecules and antibodies targeting PSMA. Lastly, we discuss the potentials, limitations, and future perspectives of PSMA-TAT.
Collapse
Affiliation(s)
- Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
- Nucligen, Ullernchausséen 64, 0379 Oslo, Norway;
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
| | - Øyvind Sverre Bruland
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | |
Collapse
|
8
|
Olguin E, President B, Ghaly M, Frey E, Sgouros G, Bolch WE. Specific absorbed fractions and radionuclide S-values for tumors of varying size and composition. Phys Med Biol 2020; 65:235015. [PMID: 32992308 DOI: 10.1088/1361-6560/abbc7e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accurate estimates of tumor absorbed dose are essential for the evaluation of treatment efficacy in radiopharmaceutical cancer therapy. Although tumor dosimetry via the MIRD schema has been previously investigated, prior studies have been limited to the consideration of soft-tissue tumors. In the present study, specific absorbed fractions (SAFs) for monoenergetic photons, electrons, and alpha particles in tumors of varying compositions were computed using Monte Carlo simulations in MCNPX after which self-irradiation S-values for 22 radionuclides (along with 14 additional alpha-emitter progeny) were generated for tumors of both varying size and tissue composition. The tumors were modeled as spheres with radii ranging from 0.10 cm to 6.0 cm and with compositions varying from 100% soft tissue (ST) to 100% mineral bone (MB). The energies of the photons and electrons were varied on a logarithm energy grid from 10 keV to 10 MeV. The energies of alpha particles were varied along a linear energy grid from 0.5 MeV to 12 MeV. In all cases, a homogenous activity distribution was assumed throughout the tumor volume. Furthermore, to assess the effect of tumor shape, several ellipsoidal tumors of different compositions were modeled and absorbed fractions were computed for monoenergetic electrons and photons. S-values were then generated using detailed decay data from the 2008 MIRD Monograph on Radionuclide Data and Decay Schemes. Our study results demonstrate that a soft-tissue model yields relative errors of 25% and 71% in the absorbed fraction assigned to uniform sources of 1.5 MeV electrons and 100 keV photons, respectively, localized within a 1 cm diameter tumor of MB. The data further show that absorbed fractions for moderate ellipsoids can be well approximated by a spherical shape of equal mass within a relative error of < 8%. S-values for 22 radionuclides (and their daughter progeny) were computed with results demonstrating how relative errors in SAFs could propagate to relative errors in tumor dose estimates as high as 86%. A comprehensive data set of radionuclide S-values by tumor size and tissue composition is provided for application of the MIRD schema for tumor dosimetry in radiopharmaceutical therapy.
Collapse
Affiliation(s)
- Edmond Olguin
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, United States of America
| | | | | | | | | | | |
Collapse
|
9
|
Ahmadzadehfar H, Rahbar K, Baum RP, Seifert R, Kessel K, Bögemann M, Kulkarni HR, Zhang J, Gerke C, Fimmers R, Kratochwil C, Rathke H, Ilhan H, Maffey-Steffan J, Sathekge M, Kabasakal L, Garcia-Perez FO, Kairemo K, Maharaj M, Paez D, Virgolini I. Prior therapies as prognostic factors of overall survival in metastatic castration-resistant prostate cancer patients treated with [ 177Lu]Lu-PSMA-617. A WARMTH multicenter study (the 617 trial). Eur J Nucl Med Mol Imaging 2020; 48:113-122. [PMID: 32383093 PMCID: PMC7835179 DOI: 10.1007/s00259-020-04797-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 12/05/2022]
Abstract
Introduction The impact of prior therapies, especially chemotherapy, on overall survival (OS) in patients with castration-resistant prostate cancer (CRPC) receiving [177Lu]Lu-PSMA-617 therapy has been the subject of controversy. Therefore, WARMTH decided to plan a multicenter retrospective analysis (the “617 trial”) to evaluate response rate and OS as well as the impact of prior therapies on OS in more than 300 patients treated with 177Lu-PSMA-617. Materials and methods The data of 631 metastatic CRPC (mCRPC) patients from 11 different clinics were evaluated. According to the inclusion and exclusion criteria, all patients had to have received at least abiraterone or enzalutamide prior to [177Lu]Lu-PSMA-617 therapy. The patients were divided into three groups: patients who had received prior chemotherapy, patients who avoided chemotherapy, and patients for whom a chemotherapy was contraindicated. Results The analysis included the data of 416 patients, with a median age of 71.9 years. At the time of analysis, 87 patients (20,9%) were still alive. A total of 53.6% of patients had received both abiraterone and enzalutamide; 75.5% and 26.4% had a history of chemotherapy with docetaxel and cabazitaxel, respectively. A total of 20.4% had had Ra-223. The median OS was 11.1 months. Prior chemotherapy, the existence of bone and liver metastases, as well as Eastern Cooperative Oncology Group (ECOG) status, were significant prognosticators of worse overall survival in both univariate and multivariate analyses. Patients without any prior chemotherapy showed a significantly longer OS (14.6 months). The median OS in patients who received one or two lines of chemotherapy with docetaxel or docetaxel followed by cabazitaxel, respectively, was 10.9 months and 8.9 months. There was no difference in OS between patients who had not received chemotherapy and patients for whom chemotherapy was contraindicated. The other prior therapies did not have any significant impact on OS. Conclusion In the present multicenter analysis, chemotherapy-naïve mCRPC patients receiving [177Lu]Lu-PSMA-617 therapy had a significantly longer OS than patients with a history of chemotherapy. This remained independent in the multivariate analysis besides presence of bone and liver metastases as negative prognosticators for survival, whereas an ECOG of 0–1 is associated with a longer OS. Electronic supplementary material The online version of this article (10.1007/s00259-020-04797-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany.
- Department of Nuclear Medicine, Klinikum Westfalen, Am Knappschaftskrankenhaus 1, 44309, Dortmund, Germany.
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Richard P Baum
- Center for Radiomolecular Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Katharina Kessel
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Martin Bögemann
- Department of Urology, University Hospital Münster, Muenster, Germany
| | - Harshad R Kulkarni
- Center for Radiomolecular Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jingjing Zhang
- Center for Radiomolecular Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Carolin Gerke
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Rathke
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, LMU, University Hospital Munich, Munich, Germany
| | | | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Levent Kabasakal
- Department of Nuclear Medicine, Istanbul University, Istanbul, Turkey
| | - Francisco Osvaldo Garcia-Perez
- Department of Nuclear Medicine and Molecular Imaging, Instituto Nacional de Cancerología Mexico City, Mexico City, Mexico
| | | | - Masha Maharaj
- Department of Nuclear Medicine, Imaging and Therapy Centre, Durban, KwaZulu-Natal, South Africa
| | - Diana Paez
- Department of Nuclear Sciences and Applications, Nuclear Medicine and Diagnostic Imaging Section, IAEA, Vienna, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Jokar N, Assadi M, Yordanova A, Ahmadzadehfar H. Bench-to-Bedside Theranostics in Nuclear Medicine. Curr Pharm Des 2020; 26:3804-3811. [PMID: 32067609 DOI: 10.2174/1381612826666200218104313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 11/22/2022]
Abstract
The optimum selection of the appropriate radiolabelled probe for the right target and the right patient is the foundation of theranostics in personalised medicine. In nuclear medicine, this process is realised through the appropriate choice of radiopharmaceuticals based on molecular biomarkers regarding molecular imaging. Theranostics is developing a strategy that can be used to implement accepted tools for individual molecular targeting, including diagnostics, and advances in genomic molecular knowledge, which has led to identifying theranostics biomaterials that have the potency to diagnose and treat malignancies. Today, numerous studies have reported on the discovery and execution of these radiotracers in personalised medicine. In this review, we presented our point of view of the most important theranostics agents that can be used to treat several types of malignancies. Molecular targeted radionuclide treatment methods based on theranostics are excellent paradigms of the relationship between molecular imaging and therapy that has been used to provide individualised or personalised patient care. Toward that end, a precise planned prospective examination of theranostics must be done to compare this approach to more standard therapies.
Collapse
Affiliation(s)
- Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Anna Yordanova
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|