1
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
2
|
Liu D, Shehzad H, Zhou L, Farooqi ZH, Sharif A, Ahmed E, Ouyang J, Masrur DM, Abed K, Fatima M, Rehman S. Encapsulation of Bamboosa vulgaris culms derived activated biochar into hierarchical permeable, phosphate rich and functionalized alginate aerogel composites and its contribution in U(VI) adsorption. Int J Biol Macromol 2024; 280:135690. [PMID: 39284474 DOI: 10.1016/j.ijbiomac.2024.135690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024]
Abstract
In this study, a facile methodology was designed to encapsulate Bamboosa vulgaris culms derived activated biochar (BVC) in a variable mass ratio, into a three-dimensional hierarchical porous and permeable and amino-thiocarbamated alginate (TSC) to prepare hybrid biosorbents (BVC-MSA). These ultralight and lyophilized phosphate rich macroporous sorbents were rationally characterized through FTIR, XRD, BET, SEM-EDS, elemental mapping, XPS techniques and employed for efficient UO22+ adsorption from aqueous solutions. The phytic acid (PA) was found to be a suitable hydrophilic and phosphorylating agent for the TSC matrix through hydrogen-bonded crosslinking when employed in a correct mass ratio (1:3). The SEM-EDS and XPS analyses confirmed the UO22+ sorption onto BVC-MSA-3 (the most suitable composite with a BVC/TSC mass ratio of 30.0 % w/w) and provided evidence of heteroatom involvement in developing the physico-chemical interactions. The BCV-MSA-3 exhibited the best response as a sorbent during kinetics/sorption process, therefore, it was selected to study the equilibrium sorption studies. The BCV-MSA-3 removal efficiency increased from 12.1 to 94.2 % using 0.2 to 1.8 g/L sorbent dose at pH (4.5). The mentioned sorbent displayed a significant maximum sorption capacity qm (309.55 mg/g at 35 °C) calculated through the best-fitted Langmuir and Temkin models (R2 ≈ 0.99). The sorption kinetics followed the pseudo-second-order (PSORE) model and exhibited fast sorption rate teq (180 min). Thermodynamic parameters clarified that the sorption process is feasible ΔGo (-25.3 to -27.6 kJ/mol kJ/mol), endothermic ΔHo (27.17 kJ/mol), and proceeds with a positive entropy (0.176 kJ/mol.K). The study shows that BCV-MSA-3 could be an alternative and auspicious sorbent for uranium removal from aqueous solution.
Collapse
Affiliation(s)
- Dan Liu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Hamza Shehzad
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China; School of Chemistry and Materials Science, East China University of Technology, China.
| | - Limin Zhou
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Jinbo Ouyang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology 418 Guanglan Road, 330013 Nanchang, China
| | - Din Mohammad Masrur
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - KhalilUllah Abed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Manahil Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Sadia Rehman
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
3
|
A novel composite (ZIF-8@PEI-CC) with enhanced adsorption capacity and kinetics of methyl orange. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Synthesis of Pillar[5]arene- and Phosphazene-Linked Porous Organic Polymers for Highly Efficient Adsorption of Uranium. Molecules 2023; 28:molecules28031029. [PMID: 36770695 PMCID: PMC9920965 DOI: 10.3390/molecules28031029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
It is crucial to design efficient adsorbents for uranium from natural seawater with wide adaptability, effectiveness, and environmental safety. Porous organic polymers (POPs) provide superb tunable porosity and stability among developed porous materials. In this work, two new POPs, i.e., HCCP-P5-1 and HCCP-P5-2 were rationally designed and constructed by linked with macrocyclic pillar[5]arene as the monomer and hexachlorophosphate as the core via a macrocycle-to-framework strategy. Both pillar[5]arene-containing POPs exhibited high uranium adsorption capacity compared with previously reported macrocycle-free counterparts. The isothermal adsorption curves and kinetic studies showed that the adsorption of POPs on uranium was consistent with the Langmuir model and the pseudo-second-order kinetic model. Especially, HCCP-P5-1 has reached 537.81 mg/g, which is greater than most POPs that have been reported. Meanwhile, the comparison between both HCCP-P5-1 and HCCP-P5-2 can illustrate that the adsorption capacity and stability could be adjusted by the monomer ratio. This work provides a new idea for the design and construction of uranium adsorbents from macrocycle-derived POPs.
Collapse
|
5
|
Liu R, Wang H, Yue C, Zhang X, Wang M, Liu L. Synthesis of molybdenum disulfide/graphene oxide composites for effective removal of U (VI) from aqueous solutions. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Ultralight, Mechanically Enhanced, and Thermally Improved Graphene-Cellulose-Polyethyleneimine Aerogels for the Adsorption of Anionic and Cationic Dyes. NANOMATERIALS 2022; 12:nano12101727. [PMID: 35630947 PMCID: PMC9146502 DOI: 10.3390/nano12101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
Graphene-cellulose-polyethyleneimine aerogels (GA-MCC-PEI) were prepared using a simple, environmentally friendly method to remove anionic and cationic dyes in water. Graphene-cellulose hydrogels were prepared using a hydrothermal method and then immersed in a polyethyleneimine aqueous solution for 48 h to obtain graphene-cellulose-polyethyleneimine hydrogels, which were then freeze-dried. The light and porous composite aerogels had a good compression resistance, and the maximum allowable pressure of the graphene-cellulose-polyethyleneimine aerogel with a cellulose content of 43% was 21.76 kPa, which was 827 times its weight. Adsorption of the anionic dye amaranth and the cationic dye methylene blue by the graphene-cellulose-polyethyleneimine aerogel was satisfactorily modeled using the Langmuir isothermal equation, indicating monolayer adsorption. When the cellulose content was 39%, the equilibrium adsorption capacities of the composite aerogel for amaranth and methylene blue were 369.37 mg/g and 237.33 mg/g, respectively. This graphene-cellulose-polyethyleneimine aerogel can be used to remove dye pollutants in water to maintain ecological balance, thus broadening the application space of aerogel materials, that is, as adsorbents in different environments.
Collapse
|
7
|
Wang Z, Wang Y, Yao C. Research progress in the treatment of uranium(VI)-contaminated wastewater by modified chitosan. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08010-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Li B, Zhu Y, Wang X, Xu H, Zhong Y, Zhang L, Ma Y, Sui X, Wang B, Feng X, Mao Z. Synthesis and application of poly (cyclotriphosphazene‐resveratrol) microspheres for enhancing flame retardancy of poly (ethylene terephthalate). POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Baojie Li
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yuanzhao Zhu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xuan Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Hong Xu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yimeng Ma
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
- National Engineering Research Center for Dyeing and Finishing of Textiles Donghua University Shanghai China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Donghua University Shanghai China
| |
Collapse
|
9
|
Wang Z, Wang Y, Yao C. Highly efficient removal of uranium(VI) from aqueous solution using the Chitosan- Hexachlorocyclotriphosphazene composite. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07944-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Amidoximated polyorganophosphazene microspheres with an excellent property of U(VI) adsorption in aqueous solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07744-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Wang Y, Long J, Xu W, Luo H, Liu J, Zhang Y, Li J, Luo X. Removal of uranium(VI) from simulated wastewater by a novel porous membrane based on crosslinked chitosan, UiO-66-NH2 and polyvinyl alcohol. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07649-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|