1
|
Chen X, Zhong J, Lin H, Ye Z, Wang Y, Ma X. Efficient enrichment of uranium (VI) in aqueous solution using magnesium-aluminum layered double hydroxide composite phosphate-modified hydrothermal biochar: Mechanism and adsorption. CHEMOSPHERE 2024; 362:142667. [PMID: 38906190 DOI: 10.1016/j.chemosphere.2024.142667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
This study presents the successful synthesis of Magnesium-aluminum layered double hydroxide composite phosphate-modified hydrothermal biochar for efficient removal of U(VI) from aqueous solutions. A novel synthesis approach involving phosphate thermal polymerization-hydrothermal method was employed, deviating from conventional pyrolysis methods, to produce hydrothermal biochar. The combination of solvent thermal polymerization technique with hydrothermal process facilitated efficient loading of layered double hydroxide (LDH) components onto the biochar surface, ensuring simplicity, low energy consumption and enhanced modifiability. Bamboo waste was utilized as the precursor for biochar, highlighting its superior green and sustainable characteristics. Additionally, this study elucidated the interactions between phosphate-modified hydrothermal biochar and LDH components with U(VI). Physicochemical analysis demonstrated that the composite biochar possessed a high surface area and abundant oxygen-containing functional groups. XPS and FTIR analyses confirmed the efficient adsorption of U(VI), attributed to chelation interactions between phosphate groups, magnesium hydroxyl groups, hydroxyl groups and U(VI), as well as the co-precipitation of U(VI) with multi-hydroxyl aluminum cations captured by LDH. The composite biochar reached adsorption equilibrium with U(VI) within 80 min and exhibited excellent fitting to the pseudo-second-order kinetic model and Langmuir model. Under conditions of pH = 4 and 298 K, it displayed significantly high maximum adsorption capacity of approximately 388.81 mg g⁻1, surpassing untreated biochar by 17-fold. The adsorption process was found to be endothermic and spontaneous and even after five consecutive adsorption-desorption cycles, the removal efficiency of U(VI) remained stable at 75.46%. These findings underscore the promising application prospects of Magnesium-aluminum layered double hydroxide composite phosphate-modified hydrothermal biochar in efficiently separating U(VI) from uranium-containing wastewater, emphasizing its environmental and economic value.
Collapse
Affiliation(s)
- Xinchen Chen
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| | - Jingyu Zhong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| | - Huanyue Lin
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| | - Ziyuan Ye
- Faculty of Psychology, Beijing Normal University, Zhuhai, 519082, Guangdong, China.
| | - Yun Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Xianfeng Ma
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China.
| |
Collapse
|
2
|
Lin SL, Zhang H, Chen WH, Song M, Kwon EE. Low-temperature biochar production from torrefaction for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2023; 387:129588. [PMID: 37558107 DOI: 10.1016/j.biortech.2023.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Biochar, a carbon-rich and por ous material derived from waste biomass resources, has demonstrated tremendous potential in wastewater treatment. Torrefaction technology offers a favorable low-temperature biochar production method, and torrefied biochar can be used not only as a solid biofuel but also as a pollutant adsorbent. This review compares torrefaction technology with other thermochemical processes and discusses recent advancements in torrefaction techniques. Additionally, the applications of torrefied biochar in wastewater treatment (dyes, oil spills, heavy metals, and emerging pollutants) are comprehensively explored. Many studies have shown that high productivity, high survival of oxygen-containing functional groups, low temperature, and low energy consumption of dried biochar production make it attractive as an adsorbent for wastewater treatment. Moreover, used biochar's treatment, reuse, and safe disposal are introduced, providing valuable insights and contributions to developing sustainable environmental remediation strategies by biochar.
Collapse
Affiliation(s)
- Sheng-Lun Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hongjie Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Mengjie Song
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Liu W, Zhang X, Ren H, Hu X, Yang X, Liu H. Co-production of spirosiloxane and biochar adsorbent from wheat straw by a low-cost and environment-friendly method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117851. [PMID: 37019023 DOI: 10.1016/j.jenvman.2023.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
To enhance the value of wheat straw derivatives, wheat straw ash (WSA) was used as a reactant for the first time to synthesize spirocyclic alkoxysilane, an important organosilicon raw material, using an energy-saving and environmentally friendly non-carbon thermal reduction method. After spirocyclic alkoxysilane extraction, the biochar in the wheat straw ash prepared an adsorbent for Cu2+. The maximum copper ion adsorption capacity (Qm) of silica-depleted wheat straw ash (SDWSA) was 31.431nullmg/g, far exceeding those of WSA and similar biomass adsorbents. The effects of the pH, adsorbent dose, and contact time on the adsorption behaviour of the SDWSA for Cu2+ adsorption were systematically investigated. The adsorption mechanism of Cu2+ by the SDWSA was investigated using the Langmuir, Freundlich, pseudo-first-order kinetic, pseudo-second-order kinetic, and Weber and Morris models by combining the preliminary experimental data and characterization results. The adsorption isotherm and Langmuir equation matched perfectly. The Weber and Morris model can describe the mass-transfer mechanism of Cu2+ adsorption by SDWSA. Both film and intraparticle diffusion are rapid control steps. Compared to WSA, SDWSA has a larger specific surface area and a higher content of oxygen-containing functional groups. A large specific surface area provides more adsorption sites. Oxygen-containing functional groups react with Cu2+ through electrostatic interactions, surface complexation, and ion exchange, which are the possible adsorption mechanisms for SDWSA. These methods improve the added value of wheat straw derivatives and promote wheat straw ash recovery and centralized treatment. This makes it possible to use the thermal energy of wheat straw and facilitates the treatment of exhaust gases and carbon capture.
Collapse
Affiliation(s)
- Wenlong Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xingwen Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| | - Hongyu Ren
- School of Resources and Environment, Northeast Agricultural University, No. 600, Changjiang Street, Harbin, 150030, China.
| | - Xingcheng Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xinyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Hui Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| |
Collapse
|
4
|
Azizi M, Abdulrahman YJ, Abdessamad NH, Azzaz AA, Naguib DM. Valorization and characterization of bio-oil from Salvadora persica seed for air pollutant adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53397-53410. [PMID: 36854946 DOI: 10.1007/s11356-023-25566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Salvadora persica (SP) is an important medicinal plant. Numerous articles have been conducted on the leaf, the roots, and the stem of the plant, but there is little information about the seed. Thus, the present work tries to identify the chemical composition of SP seed bio-oil and investigates its use as an adsorbent for cyclohexane removal. This study extracted bio-oil from seeds using different polar and non-polar organic solvents. Two techniques have been used to determine the chemical composition of the bio-oil extracted: FTIR and GC-MS. Results show that the extracted bio-oil presented 13 new major organic bio-compounds in n-hexane and ethanol SP seed extracts. Moreover, the analytical results showed that the two extracts are complex and contained thiocyanic acid, benzene, 3-pyridine carboxaldehyde, benzyl nitrile, ethyl tridecanoate, ethyl oleate, and dodecanoic acid ethyl ester. Additionally, each technique of analysis showed that the extracted bio-oils from SP seeds are rich in non-polar compounds. Indeed, the major fatty acids obtained are pentadecylic acid, myristic acid, lauric acid, oleic acid, margaric acid, and tricosanoic acid. This work provides guidelines for identifying these compounds, among others, and offers a platform for using SP seeds as a herbal alternative for various chemical, industrial, and medical applications. Furthermore, the capacity of SP extracts for air pollution treatment, namely, the removal of cyclohexane in batch mode, was investigated. Results showed that cyclohexane adsorption could be a chemical process involving both monolayer and multilayer adsorption mechanisms. The pores and the grooves on the surface of the SP bio-oil extract helped in adsorbing the cyclohexane with an outstanding maximum removal capacity of about 674.23 mg/g and 735.75 mg/g, respectively, for the ethanol and hexane SP extracts, which is superior to many other recent adsorbents.
Collapse
Affiliation(s)
- Mohamed Azizi
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia.
- Laboratory Desalination and Water Treatment Valorisation (LaDVEN), Water Research and Technologies Center (WRTC), BP 273, 8020, Soliman, Tunisia.
| | - Yousif Jumaa Abdulrahman
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- College of Science Elobied, University of Kordofan, El Obeid, Sudan
| | - NourEl-Houda Abdessamad
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- Laboratory of Wastewater and Environment, Center for Water Research and Technologies (CWRT), BP 273-8020, Soliman, Tunisia
| | - Ahmed Amine Azzaz
- Environnements Dynamiques Et Territoires de La Montagne, Université Savoie Mont-Blanc, EDYTEM, Boulevard de La Mer Caspienne, 73370, Le Bourget-du-Lac, France
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University (BU), Qilwah, Saudi Arabia
| |
Collapse
|
5
|
Zou Z, Yang L, Liu Y, Zhang Y, Cao D, Du Z, Jin J. Removal and recovery of uranium (VI) from aqueous solutions by residual sludge and its biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19907-19917. [PMID: 36242670 DOI: 10.1007/s11356-022-23514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The removal and recovery of uranium (VI) from water solutions are critical for energy and environmental security. In this study, hydrochar at 100, 150, and 190 °C (HC100, HC150, and HC190) and pyrochar at 250 °C (BC250) were prepared from residual sludge (RS). The uranium (VI) adsorption behavior, recovery, and heavy metal risk of RS and its biochars were assessed. The sorption distribution coefficient of RS was higher than those of its biochars within the tested concentration range. The maximum adsorption capacity of uranium (VI) by HC190 was 121.26 mg/g at acidic pH (pH 4.5), which was higher than those of other tested biochars, previously reported unmodified biochars, and activated carbon. The zeta potential, FTIR, and XPS results implied that the adsorption of uranium (VI) by RS and its biochars was regulated by electrostatic attraction and the complexation with oxygen- and phosphorus-containing functional groups. Besides, partial reduction of uranium (VI) into uranium (IV) happened during the process of adsorption. More than 86% of the adsorbed uranium (VI) was recovered by 0.01 M hydrochloric acid and 100% by 0.01 M sodium carbonate. The leaching amount of heavy metals was greatly reduced after the sludge was converted to biochar, indicating that hydrothermal carbonization and pyrolysis can promote the stabilization of heavy metals. This work demonstrates that RS and its biochars can be implemented as low-cost, environment-friendly, and high-efficient materials for the purification of uranium (VI)-containing solutions by means of adsorption and desorption.
Collapse
Affiliation(s)
- Ziwei Zou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Lu Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yue Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Ziwen Du
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
6
|
Chen X, Xia H, Lv J, Liu Y, Li Y, Xu L, Xie C, Wang Y. Magnetic hydrothermal biochar for efficient enrichment of uranium(VI) by embedding Fe3O4 nanoparticles on bamboo materials from “one-can” strategy. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kaynar UH. Modeling and optimization for adsorption of thorium (IV) ions using nano Gd:ZnO: application of response surface methodology (RSM) and artificial neural network (ANN). INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2072345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Umit H. Kaynar
- Faculty of Engineering and Architecture, Department of Fundamental Sciences, Bakırcay University, Menemen, Izmir, Turkey
| |
Collapse
|
8
|
Wang C, Wang G, Xie S, Wang J, Guo Y. Removal behavior and mechanisms of U(VI) in aqueous solution using aloe vera biochar with highly developed porous structure. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08281-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Chen X, Wang Y, Lv J, Feng Z, Liu Y, Xia H, Li Y, Wang C, Zeng K, Liu Y, Yuan D. Simple one-pot synthesis of manganese dioxide modified bamboo-derived biochar composite for uranium(VI) removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj02292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploitation of bamboo-derived biochar offers a lucrative opportunity for using moso bamboo due to its short growth cycle, large quantity and universality. Novel MnO2 modified bamboo-derived biochar composites (MnO2@BBC) were...
Collapse
|
10
|
Kaynar UH, Çam Kaynar S, Ekdal Karali E, Ayvacıkli M, Can N. Adsorption of thorium (IV) ions by metal ion doped ZnO nanomaterial prepared with combustion synthesis: Empirical modelling and process optimization by response surface methodology (RSM). Appl Radiat Isot 2021; 178:109955. [PMID: 34547650 DOI: 10.1016/j.apradiso.2021.109955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Environmental problems have reached enormous dimensions, driving efforts to remove and recycle waste from energy and industrial production. In particular, removing the radionuclide contamination that occurs as the nuclear industry grows is difficult and costly, but it is vital. Technologic and economical methods and advanced facilities are needed for the separation and purification of radioactive elements arising from the nuclear industry and uranium and thorium mining. With the adsorption method, which is the most basic separation and recovery method, the use of high-capacity nanomaterials has recently gained great importance in reducing the activity of the waste, reducing its volume by transforming it into solid form, and recovering and removing liquid radioactive wastes that might harm the ecological environment. This study aimed to determine the adsorption properties of metal ion-doped nano ZnO (nano-ZnO:Al) material synthesized by the microwave-assisted gel combustion method for the adsorption of thorium (IV) from aqueous media. First, characterization processes such as XRD, SEM, BET and zeta potential were performed to observe changes in the host ZnO adsorbent structure caused by the doping process. Later, this was optimized via the response surface method (RSM), which is widely used in the characterization of the adsorption properties of thorium (IV) from aqueous solutions. Such characterization is commonly used in industrial research. We tested how pH (3-8), temperature (20-60 °C), Th (IV) concentration (25-125 mg/L) and adsorbent amount (0.01-0.1 g) affect adsorption efficiency. The best possible combinations of these parameters were determined by RSM. It was calculated by RSM that the design fits the second order (quadratic) model using the central composite design (CCD) for the design of experimental conditions. R2 and R2 adjusted values from the parameters showing the model fit were 0.9923 and 0.9856, respectively. According to the model, the experimental adsorption capacity was 192.3 mg/g for the doped-ZnO nanomaterial under the theoretically specified optimum conditions. Also, the suitability of Th (IV) adsorption to isotherms was examined and thermodynamic parameters were calculated.
Collapse
Affiliation(s)
- U H Kaynar
- Bakırcay University, Faculty of Engineering and Architecture, Department of Fundamental Sciences, Menemen, Izmir, Turkey
| | - S Çam Kaynar
- Department of Physics, Manisa Celal Bayar University, Faculty of Arts and Sciences, Muradiye, Manisa, 45010, Turkey
| | - E Ekdal Karali
- Ege University, Institute of Nuclear Sciences, 35100, Bornova, Izmir, Turkey
| | - M Ayvacıkli
- Manisa Celal Bayar University, Hasan Ferdi Turgutlu Technology Faculty, Mechatronics Engineering, Turgutlu-Manisa, Turkey
| | - N Can
- Department of Physics, Manisa Celal Bayar University, Faculty of Arts and Sciences, Muradiye, Manisa, 45010, Turkey; Jazan University, Physics Department, P.O. Box 114, 45142, Jazan, Saudi Arabia.
| |
Collapse
|
11
|
Selective removal and immobilization of cesium from aqueous solution using sludge functionalized with potassium copper hexacyanoferrate: a low-cost adsorbent. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07964-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|