1
|
Zhou BR, Feng H, Kale S, Fox T, Khant H, de Val N, Ghirlando R, Panchenko AR, Bai Y. Distinct Structures and Dynamics of Chromatosomes with Different Human Linker Histone Isoforms. Mol Cell 2021; 81:166-182.e6. [PMID: 33238161 PMCID: PMC7796963 DOI: 10.1016/j.molcel.2020.10.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022]
Abstract
The repeating structural unit of metazoan chromatin is the chromatosome, a nucleosome bound to a linker histone, H1. There are 11 human H1 isoforms with diverse cellular functions, but how they interact with the nucleosome remains elusive. Here, we determined the cryoelectron microscopy (cryo-EM) structures of chromatosomes containing 197 bp DNA and three different human H1 isoforms, respectively. The globular domains of all three H1 isoforms bound to the nucleosome dyad. However, the flanking/linker DNAs displayed substantial distinct dynamic conformations. Nuclear magnetic resonance (NMR) and H1 tail-swapping cryo-EM experiments revealed that the C-terminal tails of the H1 isoforms mainly controlled the flanking DNA orientations. We also observed partial ordering of the core histone H2A C-terminal and H3 N-terminal tails in the chromatosomes. Our results provide insights into the structures and dynamics of the chromatosomes and have implications for the structure and function of chromatin.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Tara Fox
- Center of Macromolecular Microscopy, National Cancer Institute, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Htet Khant
- Center of Macromolecular Microscopy, National Cancer Institute, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Natalia de Val
- Center of Macromolecular Microscopy, National Cancer Institute, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Structural and functional characterization of a cold adapted TPM-domain with ATPase/ADPase activity. J Struct Biol 2016; 197:201-209. [PMID: 27810564 DOI: 10.1016/j.jsb.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 12/17/2022]
Abstract
The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed.
Collapse
|
3
|
Pellizza LA, Smal C, Ithuralde RE, Turjanski AG, Cicero DO, Arán M. Structural and functional characterization of a cold-adapted stand-alone TPM domain reveals a relationship between dynamics and phosphatase activity. FEBS J 2016; 283:4370-4385. [PMID: 27754607 DOI: 10.1111/febs.13929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/13/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023]
Abstract
The TPM domain constitutes a family of recently characterized protein domains that are present in most living organisms. Although some progress has been made in understanding the cellular role of TPM-containing proteins, the relationship between structure and function is not clear yet. We have recently solved the solution and crystal structure of one TPM domain (BA42) from the Antarctic bacterium Bizionia argentinensis. In this work, we demonstrate that BA42 has phosphoric-monoester hydrolase activity. The activity of BA42 is strictly dependent on the binding of divalent metals and retains nearly 70% of the maximum at 4 °C, a typical characteristic of cold-adapted enzymes. From HSQC, 15 N relaxation measurements, and molecular dynamics studies, we determine that the flexibility of the crossing loops was associated to the protein activity. Thermal unfolding experiments showed that the local increment in flexibility of Mg2+ -bound BA42, when compared with Ca2+ -bound BA42, is associated to a decrease in global protein stability. Finally, through mutagenesis experiments, we unambiguously demonstrate that the region comprising the metal-binding site participates in the catalytic mechanism. The results shown here contribute to the understanding of the relationship between structure and function of this new family of TPM domains providing important cues on the regulatory role of Mg2+ and Ca2+ and the molecular mechanism underlying enzyme activity at low temperatures.
Collapse
Affiliation(s)
| | - Clara Smal
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Raúl E Ithuralde
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Daniel O Cicero
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma 'Tor Vergata', Italy
| | - Martín Arán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Sinha A, Eniyan K, Sinha S, Lynn AM, Bajpai U. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity. Protein Expr Purif 2015; 111:23-7. [DOI: 10.1016/j.pep.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/27/2022]
|
5
|
Aran M, Smal C, Pellizza L, Gallo M, Otero LH, Klinke S, Goldbaum FA, Ithurralde ER, Bercovich A, Mac Cormack WP, Turjanski AG, Cicero DO. Solution and crystal structure of BA42, a protein from the Antarctic bacteriumBizionia argentinensiscomprised of a stand-alone TPM domain. Proteins 2014; 82:3062-78. [DOI: 10.1002/prot.24667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Aran
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
| | - Clara Smal
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
| | - Leonardo Pellizza
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
| | - Mariana Gallo
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
| | - Lisandro H. Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE); Buenos Aires Argentina
| | - Esteban R. Ithurralde
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, e INQUIMAE-CONICET, Intendente Güiraldes 2160 (C1428EGA); Buenos Aires Argentina
| | - Andrés Bercovich
- Biosidus S.A., Constitución 4234 (C1254ABX); Buenos Aires Argentina
| | | | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, e INQUIMAE-CONICET, Intendente Güiraldes 2160 (C1428EGA); Buenos Aires Argentina
| | - Daniel O. Cicero
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma “Tor Vergata”, via della Ricerca Scientifica SNC (00133); Rome Italy
| |
Collapse
|
6
|
Stark JL, Copeland JC, Eletsky A, Somerville GA, Szyperski T, Powers R. Identification of low-molecular-weight compounds inhibiting growth of corynebacteria: potential lead compounds for antibiotics. ChemMedChem 2014; 9:282-5. [PMID: 24403054 DOI: 10.1002/cmdc.201300386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Indexed: 01/17/2023]
Abstract
The bacterial genus Corynebacteria contains several pathogenic species that cause diseases such as diphtheria in humans and "cheesy gland" in goats and sheep. Thus, identifying new therapeutic targets to treat Corynebacteria infections is both medically and economically important. CG2496, a functionally uncharacterized protein from Corynebacterium glutamicum, was evaluated using an NMR ligand-affinity screen. A total of 11 compounds from a library of 460 biologically active compounds were shown to selectively bind CG2496 in a highly conserved region of the protein. The best binder was identified to be methiothepin (KD =54 ± 19 µM), an FDA-approved serotonin receptor antagonist. Methiothepin was also shown to inhibit the growth of C. glutamicum, but not bacteria that lack CG2496 homologs. Our results suggest that CG2496 is a novel therapeutic target and methiothepin is a potential lead compound or structural scaffold for developing new antibiotics specifically targeting Corynebacteria.
Collapse
Affiliation(s)
- Jaime L Stark
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | | | | | | | | | | |
Collapse
|
7
|
Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit. Nat Neurosci 2012; 15:1374-81. [DOI: 10.1038/nn.3197] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/30/2012] [Indexed: 02/07/2023]
|