1
|
Ditzel A, Zhao F, Gao X, Phillips GN. Utilizing a cell-free protein synthesis platform for the biosynthesis of a natural product, caffeine. Synth Biol (Oxf) 2023; 8:ysad017. [PMID: 38149044 PMCID: PMC10750991 DOI: 10.1093/synbio/ysad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Natural products are a valuable source of pharmaceuticals, providing a majority of the small-molecule drugs in use today. However, their production through organic synthesis or in heterologous hosts can be difficult and time-consuming. Therefore, to allow for easier screening and production of natural products, we demonstrated the use of a cell-free protein synthesis system to partially assemble natural products in vitro using S-Adenosyl Methionine (SAM)-dependent methyltransferase enzyme reactions. The tea caffeine synthase, TCS1, was utilized to synthesize caffeine within a cell-free protein synthesis system. Cell-free systems also provide the benefit of allowing the use of substrates that would normally be toxic in a cellular environment to synthesize novel products. However, TCS1 is unable to utilize a compound like S-adenosyl ethionine as a cofactor to create ethylated caffeine analogs. The automation and reduced metabolic engineering requirements of cell-free protein synthesis systems, in combination with other synthesis methods, may enable the more efficient generation of new compounds. Graphical Abstract.
Collapse
Affiliation(s)
| | - Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
2
|
Chae YK, Um Y, Kim H. A simple and sensitive detection of the binding ligands by using the receptor aggregation and NMR spectroscopy: a test case of the maltose binding protein. JOURNAL OF BIOMOLECULAR NMR 2021; 75:371-381. [PMID: 34524563 PMCID: PMC8441238 DOI: 10.1007/s10858-021-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Protein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.
Collapse
Affiliation(s)
- Young Kee Chae
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea.
| | - Yoonjin Um
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| | - Hakbeom Kim
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| |
Collapse
|
3
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Feng J, Yang C, Zhao Z, Xu J, Li J, Li P. Application of Cell-Free Protein Synthesis System for the Biosynthesis of l-Theanine. ACS Synth Biol 2021; 10:620-631. [PMID: 33719397 DOI: 10.1021/acssynbio.0c00618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
l-Theanine, as an active component of the leaves of the tea plant, possesses many health benefits and broad applications. Chemical synthesis of l-theanine is possible; however, this method generates chiral compounds and needs further isolation of the pure l-isoform. Heterologous biosynthesis is an alternative strategy, but one main limitation is the toxicity of the substrate ethylamine on microbial host cells. In this study, we introduced a cell-free protein synthesis (CFPS) system for l-theanine production. The CFPS expressed l-theanine synthetase 2 from Camellia sinensis (CsTS2) could produce l-theanine at a concentration of 11.31 μM after 32 h of the synthesis reaction. In addition, three isozymes from microorganisms were expressed in CFPS for l-theanine biosynthesis. The γ-glutamylcysteine synthetase from Escherichia coli could produce l-theanine at the highest concentration of 302.96 μM after 24 h of reaction. Furthermore, CFPS was used to validate a hypothetical two-step l-theanine biosynthetic pathway consisting of the l-alanine decarboxylase from C. sinensis (CsAD) and multiple l-theanine synthases. Among them, the combination of CsAD and the l-glutamine synthetase from Pseudomonas taetrolens (PtGS) could synthesize l-theanine at the highest concentration of 13.42 μM. Then, we constructed an engineered E. coli strain overexpressed CsAD and PtGS to further confirm the l-theanine biosynthesis ability in living cells. This engineered E. coli strain could convert l-alanine and l-glutamate in the medium to l-theanine at a concentration of 3.82 mM after 72 h of fermentation. Taken together, these results demonstrated that the CFPS system can be used to produce the l-theanine through the two-step l-theanine biosynthesis pathway, indicating the potential application of CFPS for the biosynthesis of other active compounds.
Collapse
Affiliation(s)
- Junchen Feng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhehao Zhao
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junjian Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Crowley EL, Rafferty SP. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr Purif 2019; 157:70-85. [PMID: 30708035 DOI: 10.1016/j.pep.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.
Collapse
Affiliation(s)
- Erika L Crowley
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| | - Steven P Rafferty
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
6
|
Welner DH, Tsai AYL, DeGiovanni AM, Scheller HV, Adams PD. X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa. Acta Crystallogr F Struct Biol Commun 2017; 73:241-245. [PMID: 28368284 PMCID: PMC5379175 DOI: 10.1107/s2053230x17004587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 11/20/2022] Open
Abstract
The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstrate DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.
Collapse
Affiliation(s)
- Ditte Hededam Welner
- DTU Bioengineering, Technical University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Alex Yi-Lin Tsai
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Andy M. DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Deng K, Takasuka TE, Bianchetti CM, Bergeman LF, Adams PD, Northen TR, Fox BG. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases. Front Bioeng Biotechnol 2015; 3:165. [PMID: 26579511 PMCID: PMC4621489 DOI: 10.3389/fbioe.2015.00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022] Open
Abstract
Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.
Collapse
Affiliation(s)
- Kai Deng
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Taichi E Takasuka
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA
| | - Christopher M Bianchetti
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA ; Department of Chemistry, University of Wisconsin-Oshkosh , Oshkosh, WI , USA
| | - Lai F Bergeman
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA
| | - Paul D Adams
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA ; Department of Bioengineering, University of California Berkeley , Berkeley, CA , USA
| | - Trent R Northen
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| | - Brian G Fox
- US Department of Energy Great Lakes Bioenergy Research Center , Madison, WI , USA ; Department of Biochemistry, University of Wisconsin-Madison , Madison, WI , USA
| |
Collapse
|
8
|
Deng K, Guenther JM, Gao J, Bowen BP, Tran H, Reyes-Ortiz V, Cheng X, Sathitsuksanoh N, Heins R, Takasuka TE, Bergeman LF, Geertz-Hansen H, Deutsch S, Loqué D, Sale KL, Simmons BA, Adams PD, Singh AK, Fox BG, Northen TR. Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS. Front Bioeng Biotechnol 2015; 3:153. [PMID: 26528471 PMCID: PMC4603251 DOI: 10.3389/fbioe.2015.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
Cost-effective hydrolysis of biomass into sugars for biofuel production requires high-performance low-cost glycoside hydrolase (GH) cocktails that are active under demanding process conditions. Improving the performance of GH cocktails depends on knowledge of many critical parameters, including individual enzyme stabilities, optimal reaction conditions, kinetics, and specificity of reaction. With this information, rate- and/or yield-limiting reactions can be potentially improved through substitution, synergistic complementation, or protein engineering. Given the wide range of substrates and methods used for GH characterization, it is difficult to compare results across a myriad of approaches to identify high performance and synergistic combinations of enzymes. Here, we describe a platform for systematic screening of GH activities using automatic biomass handling, bioconjugate chemistry, robotic liquid handling, and nanostructure-initiator mass spectrometry (NIMS). Twelve well-characterized substrates spanning the types of glycosidic linkages found in plant cell walls are included in the experimental workflow. To test the application of this platform and substrate panel, we studied the reactivity of three engineered cellulases and their synergy of combination across a range of reaction conditions and enzyme concentrations. We anticipate that large-scale screening using the standardized platform and substrates will generate critical datasets to enable direct comparison of enzyme activities for cocktail design.
Collapse
Affiliation(s)
- Kai Deng
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Joel M Guenther
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Jian Gao
- Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| | | | - Huu Tran
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Vimalier Reyes-Ortiz
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| | - Xiaoliang Cheng
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| | - Noppadon Sathitsuksanoh
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| | - Richard Heins
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Taichi E Takasuka
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin , Madison, WI , USA
| | - Lai F Bergeman
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin , Madison, WI , USA
| | | | - Samuel Deutsch
- Lawrence Berkeley National Laboratory , Berkeley, CA , USA ; Joint Genome Institute , Walnut Creek, CA , USA
| | - Dominique Loqué
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| | - Kenneth L Sale
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Blake A Simmons
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Paul D Adams
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA ; Department of Bioengineering, University of California Berkeley , Berkeley, CA , USA
| | - Anup K Singh
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Sandia National Laboratories , Livermore, CA , USA
| | - Brian G Fox
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin , Madison, WI , USA ; Department of Biochemistry, University of Wisconsin , Madison, WI , USA
| | - Trent R Northen
- US Department of Energy Joint BioEnergy Institute , Emeryville, CA , USA ; Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| |
Collapse
|
9
|
Gagoski D, Polinkovsky ME, Mureev S, Kunert A, Johnston W, Gambin Y, Alexandrov K. Performance benchmarking of four cell-free protein expression systems. Biotechnol Bioeng 2015; 113:292-300. [PMID: 26301602 DOI: 10.1002/bit.25814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/20/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022]
Abstract
Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.
Collapse
Affiliation(s)
- Dejan Gagoski
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Mark E Polinkovsky
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Anne Kunert
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia.
| |
Collapse
|