1
|
Charoenkwan P, Schaduangrat N, Lio P, Moni MA, Chumnanpuen P, Shoombuatong W. iAMAP-SCM: A Novel Computational Tool for Large-Scale Identification of Antimalarial Peptides Using Estimated Propensity Scores of Dipeptides. ACS OMEGA 2022; 7:41082-41095. [PMID: 36406571 PMCID: PMC9670693 DOI: 10.1021/acsomega.2c04465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antimalarial peptides (AMAPs) varying in length, amino acid composition, charge, conformational structure, hydrophobicity, and amphipathicity reflect their diversity in antimalarial mechanisms. Due to the worldwide major health problem concerning antimicrobial resistance, these peptides possess great therapeutic value owing to their low incidences of drug resistance as compared to conventional antibiotics. Although well-known experimental methods are able to precisely determine the antimalarial activity of peptides, these methods are still time-consuming and costly. Thus, machine learning (ML)-based methods that are capable of identifying AMAPs rapidly by using only sequence information would be beneficial for the high-throughput identification of AMAPs. In this study, we propose the first computational model (termed iAMAP-SCM) for the large-scale identification and characterization of peptides with antimalarial activity by using only sequence information. Specifically, we employed an interpretable scoring card method (SCM) to develop iAMAP-SCM and estimate propensities of 20 amino acids and 400 dipeptides to be AMAPs in a supervised manner. Experimental results showed that iAMAP-SCM could achieve a maximum accuracy and Matthew's coefficient correlation of 0.957 and 0.834, respectively, on the independent test dataset. In addition, SCM-derived propensities of 20 amino acids and selected physicochemical properties were used to provide an understanding of the functional mechanisms of AMAPs. Finally, a user-friendly online computational platform of iAMAP-SCM is publicly available at http://pmlabstack.pythonanywhere.com/iAMAP-SCM. The iAMAP-SCM predictor is anticipated to assist experimental scientists in the high-throughput identification of potential AMAP candidates for the treatment of malaria and other clinical applications.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern
Management and Information Technology, College of Arts, Media and
Technology, Chiang Mai University, Chiang Mai50200, Thailand
| | - Nalini Schaduangrat
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok10700, Thailand
| | - Pietro Lio
- Department
of Computer Science and Technology, University
of Cambridge, CambridgeshireCB3 0FD, U.K.
| | - Mohammad Ali Moni
- Artificial
Intelligence & Digital Health, School of Health and Rehabilitation
Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St LuciaQLD 4072, Australia
| | - Pramote Chumnanpuen
- Department
of Zoology, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
- Omics Center
for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok10900, Thailand
| | - Watshara Shoombuatong
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok10700, Thailand
| |
Collapse
|
2
|
Chaianantakul N, Sungkapong T, Supatip J, Kingsang P, Kamlaithong S, Suwanakitti N. Antimalarial effect of cell penetrating peptides derived from the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Peptides 2020; 131:170372. [PMID: 32673701 DOI: 10.1016/j.peptides.2020.170372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022]
Abstract
Dihydrofolate reductase-thymidylate synthase of Plasmodium falciparum (PfDHFR-TS) is an important target of antifolate antimalarial drugs. However, drug resistant parasites are widespread in malaria endemic regions. The unique bifunctional property of PfDHFR-TS could be exploited for the design of allosteric inhibitors that interfere with the active dimer conformation. In this study, peptides were derived from the junctional region (JR) of PfDHFR-TS amino acid sequence in the αj1 helix (JR-helix) and the DHFR domain that is necessary for interaction with αj1 helix (JR21). Five peptides were synthesized and tested for inhibition of PfDHFR-TS enzyme by Bacterial inhibition assay (BIA) based on the growth of an E. coli DHFR and TS knockout complemented with a recombinant plasmid expressing PfDHFR-TS enzyme. Significant inhibition was observed for JR21 and JR21 conjugated to cell-penetrating octa-arginine peptide (rR8-JR21) with 50 % inhibitory concentration (IC50) of 3.87 and 1.53 μM, respectively. The JR-helix and rR8-JR-helix peptides were inactive. JR21 and rR8-JR21 peptides showed similar growth inhibitory effects on P. falciparum NF54 parasites cultured in vitro. Treatment with rR8-JR21 delayed parasite development, in which an accumulation of ring stage parasites was observed after 12 h of culture. Minimal red blood cell (RBC) hemolysis was observed at the highest dose of peptide tested. The most potent peptide rR8-JR21 not only compromised the development of the P. falciparum, but also inhibited the parasite growth and has low hemolytic effect on human RBCs.
Collapse
Affiliation(s)
- Natpasit Chaianantakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Tippawan Sungkapong
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jaturayut Supatip
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pitchayanin Kingsang
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sarayut Kamlaithong
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Nattida Suwanakitti
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
3
|
Yadav BS, Chaturvedi N, Marina N. Recent Advances in System Based Study for Anti-Malarial Drug Development Process. Curr Pharm Des 2019; 25:3367-3377. [DOI: 10.2174/1381612825666190902162105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Background:
Presently, malaria is one of the most prevalent and deadly infectious disease across Africa,
Asia, and America that has now started to spread in Europe. Despite large research being carried out in the
field, still, there is a lack of efficient anti-malarial therapeutics. In this paper, we highlight the increasing efforts
that are urgently needed towards the development and discovery of potential antimalarial drugs, which must be
safe and affordable. The new drugs thus mentioned are also able to counter the spread of malaria parasites that
have been resistant to the existing agents.
Objective:
The main objective of the review is to highlight the recent development in the use of system biologybased
approaches towards the design and discovery of novel anti-malarial inhibitors.
Method:
A huge literature survey was performed to gain advance knowledge about the global persistence of
malaria, its available treatment and shortcomings of the available inhibitors. Literature search and depth analysis
were also done to gain insight into the use of system biology in drug discovery and how this approach could be
utilized towards the development of the novel anti-malarial drug.
Results:
The system-based analysis has made easy to understand large scale sequencing data, find candidate
genes expression during malaria disease progression further design of drug molecules those are complementary of
the target proteins in term of shape and configuration.
Conclusion:
The review article focused on the recent computational advances in new generation sequencing,
molecular modeling, and docking related to malaria disease and utilization of the modern system and network
biology approach to antimalarial potential drug discovery and development.
Collapse
Affiliation(s)
- Brijesh S. Yadav
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| |
Collapse
|
4
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
5
|
Musyoka TM, Njuguna JN, Tastan Bishop Ö. Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design. Malar J 2019; 18:159. [PMID: 31053072 PMCID: PMC6500056 DOI: 10.1186/s12936-019-2790-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.
Collapse
Affiliation(s)
- Thommas Mutemi Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Joyce Njoki Njuguna
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
6
|
NMR model structure of the antimicrobial peptide maximin 3. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:203-212. [DOI: 10.1007/s00249-019-01346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
|
7
|
Habtewold T, Tapanelli S, Masters EKG, Hoermann A, Windbichler N, Christophides GK. Streamlined SMFA and mosquito dark-feeding regime significantly improve malaria transmission-blocking assay robustness and sensitivity. Malar J 2019; 18:24. [PMID: 30683107 PMCID: PMC6347765 DOI: 10.1186/s12936-019-2663-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/19/2019] [Indexed: 02/03/2023] Open
Abstract
Background The development of malaria transmission-blocking strategies including the generation of malaria refractory mosquitoes to replace the wild populations through means of gene drives hold great promise. The standard membrane feeding assay (SMFA) that involves mosquito feeding on parasitized blood through an artificial membrane system is a vital tool for evaluating the efficacy of transmission-blocking interventions. However, despite the availability of several published protocols, the SMFA remains highly variable and broadly insensitive. Methods The SMFA protocol was optimized through coordinated culturing of Anopheles coluzzii mosquitoes and Plasmodium falciparum parasite coupled with placing mosquitoes under a strict dark regime before, during, and after the gametocyte feed. Results A detailed description of essential steps is provided toward synchronized generation of highly fit An. coluzzii mosquitoes and P. falciparum gametocytes in preparation for an SMFA. A dark-infection regime that emulates the natural vector-parasite interaction system is described, which results in a significant increase in the infection intensity and prevalence. Using this optimal SMFA pipeline, a series of putative transmission-blocking antimicrobial peptides (AMPs) were screened, confirming that melittin and magainin can interfere with P. falciparum development in the vector. Conclusion A robust SMFA protocol that enhances the evaluation of interventions targeting human malaria transmission in laboratory setting is reported. Melittin and magainin are identified as highly potent antiparasitic AMPs that can be used for the generation of refractory Anopheles gambiae mosquitoes.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK.
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Astrid Hoermann
- Department of Life Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
8
|
Torres MDT, Pedron CN, da Silva Lima JA, da Silva PI, da Silva FD, Oliveira VX. Antimicrobial activity of leucine-substituted decoralin analogs with lower hemolytic activity. J Pept Sci 2017; 23:818-823. [PMID: 28795464 DOI: 10.1002/psc.3029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Linear cationic α-helical antimicrobial peptides are promising chemotherapeutics. Most of them act by different mechanisms, making it difficult to microorganisms acquiring resistance. Decoralin is an example of antimicrobial peptide; it was described by Konno et al. and presented activity against microorganisms, but with pronounced hemolytic activity. We synthesized leucine-substituted decoralin analogs designed based on important physicochemical properties, which depend on the maintenance of the amphiphilic α-helical tendency of the native molecule. Peptides were synthesized, purified, and characterized, and the conformational studies were performed. The results indicated that the analogs presented both higher therapeutic indexes, but with antagonistic behavior. While [Leu]10 -Dec-NH2 analog showed similar activity against different microorganisms (c.a. 0.4-0.8 μmol L-1 ), helical structuration, and some hemolytic activity, [Leu]8 -Dec-NH2 analog did not tend to helical structure and presented antimicrobial activities two orders higher than the other two peptides analyzed. On the other hand, this analog showed to be the less hemolytic (MHC value = 50.0 μmol L-1 ). This approach provided insight for understanding the effects of the leucine substitution in the amphiphilic balance. They led to changes on the conformational tendency, which showed to be important for the mechanism of action and affecting antimicrobial and hemolytic activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Dias da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Vani Xavier Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| |
Collapse
|