1
|
Rai N, Tiwari RT, Sahu A, Verma E, Rathore S, Patil S, Patil AG. Exploring Tryptophan-based Short Peptides: Promising Candidate for Anticancer and Antimicrobial Therapies. Anticancer Agents Med Chem 2025; 25:124-133. [PMID: 39297455 DOI: 10.2174/0118715206260662240613054521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND Ultra-short peptides are essential therapeutic agents due to their heightened selectivity and reduced toxicity. Scientific literature documents the utilization of dipeptides, tripeptides, and tetrapeptides as promising agents for combating cancer. We have created a range of tryptophan-based peptides derived from literature sources in order to assess their potential as anticancer drugs. METHODS We present the results of our study on the antibacterial and anticancer effectiveness of 10 ultra-short peptides that were produced utilizing microwave-assisted solid phase peptide synthesis. The synthesized peptides underwent screening for in vitro antibacterial activity using the agar dilution method. RESULTS HPLC, LC-MS, 1H NMR, and 13C NMR spectroscopy were used to analyze the synthesized peptides. In tests using the HeLa and MCF-7 cell lines, the synthesized peptides' anticancer efficacy was assessed. The study found that two peptides showed potential median inhibitory concentration (IC50) values of 3.9±0.13 μM and 1.8±0.09 μM, respectively, and showed more activity than the reference medication doxorubicin. CONCLUSION The antibacterial activity of synthesized peptides 3b and 4b was found to be better than the other synthetic peptides. MIC value of roughly 5-50 μg/mL for peptides 3a, 4c, and 4d showed strong antifungal activity against Candida albicans. The synthesized peptides were also evaluated for their anticancer activity against HeLa and MCF-7 cell lines, and found that peptides 3e and 4e were more potent than other peptides against doxorubicin.
Collapse
Affiliation(s)
- Neha Rai
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Richa Tripathy Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
- Amity Institute of Pharmacy, Amity University Rajasthan, NH11C Kant Kanwar, Jaipur, 300202, India
| | - Ekta Verma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Swati Rathore
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Shailendra Patil
- SVN Institute of Pharmaceutical Sciences, Swami Vivekanand University, Sagar, Madhya Pradesh, India
| | - Asmita Gajbhiye Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| |
Collapse
|
2
|
Giraldo-Lorza JM, Leidy C, Manrique-Moreno M. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. MEMBRANES 2024; 14:220. [PMID: 39452832 PMCID: PMC11509253 DOI: 10.3390/membranes14100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Cholesterol is a biological molecule that is essential for cellular life. It has unique features in terms of molecular structure and function, and plays an important role in determining the structure and properties of cell membranes. One of the most recognized functions of cholesterol is its ability to increase the level of lipid packing and rigidity of biological membranes while maintaining high levels of lateral mobility of the bulk lipids, which is necessary to sustain biochemical signaling events. There is increased interest in designing bioactive peptides that can act as effective antimicrobial agents without causing harm to human cells. For this reason, it becomes relevant to understand how cholesterol can affect the interaction between bioactive peptides and lipid membranes, in particular by modulating the peptides' ability to penetrate and disrupt the membranes through these changes in membrane rigidity. Here we discuss cholesterol and its role in modulating lipid bilayer properties and discuss recent evidence showing how cholesterol modulates bioactive peptides to different degrees.
Collapse
Affiliation(s)
- Juan M. Giraldo-Lorza
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
3
|
Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Aquatic Peptide: The Potential Anti-Cancer and Anti-Microbial Activity of GE18 Derived from Pathogenic Fungus Aphanomyces invadans. Molecules 2023; 28:6746. [PMID: 37764521 PMCID: PMC10534430 DOI: 10.3390/molecules28186746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - P. Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India;
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Priya PS, Kumar RS, Gawwad MRA, Alarjani KM, Elshikhe MS, Namasivayam SKR, Arockiaraj J. Azadiradione (AZD) neem biomass derived limonoid: extraction, characterization, and potential biological activities with special reference to anti-microbial and anti-cancer activities. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 158:405-416. [DOI: 10.1016/j.sajb.2023.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
5
|
Velayutham M, Sarkar P, Karuppiah KM, Arumugam P, Shajahan S, Abu Haija M, Ahamad T, Arasu MV, Al-Dhabi NA, Choi KC, Guru A, Arockiaraj J. PS9, Derived from an Aquatic Fungus Virulent Protein, Glycosyl Hydrolase, Arrests MCF-7 Proliferation by Regulating Intracellular Reactive Oxygen Species and Apoptotic Pathways. ACS OMEGA 2023; 8:18543-18553. [PMID: 37273629 PMCID: PMC10233697 DOI: 10.1021/acsomega.3c00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
One of the most common diseases in women is breast cancer, which has the highest death globally. Surgery, chemotherapy, hormone treatments, and radiation are the current treatment options for breast cancer. However, these options have several adverse side effects. Recently, peptide-based drugs have gained attention as anticancer therapy. Studies report that peptides from biological toxins such as venom and virulent pathogenic molecules have potential therapeutic effects against multiple diseases, including cancers. This study reports on the in vitro anticancer effect of a short peptide, PS9, derived from a virulent protein, glycosyl hydrolase, of an aquatic fungus, Aphanomyces invadans. This peptide arrests MCF-7 proliferation by regulating intercellular reactive oxygen species (ROS) and apoptotic pathways. Based on the potential for the anticancer effect of PS9, from the in silico analysis, in vitro analyses using MCF-7 cells were executed. PS9 showed a dose-dependent activity; its IC50 value was 25.27-43.28 μM at 24 h. The acridine orange/ethidium bromide (AO/EtBr) staining, to establish the status of apoptosis in MCF-7 cells, showed morphologies for early and late apoptosis and necrotic cell death. The 2,7-dichlorodihydrofluorescein diacetate (DCFDA) staining and biochemical analyses showed a significant increase in reactive oxygen species (ROS). Besides, PS9 has been shown to regulate the caspase-mediated apoptotic pathway. PS9 is nontoxic, in vitro, and in vivo zebrafish larvae. Together, PS9 may have an anticancer effect in vitro.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department
of Medical Biotechnology and Integrative Physiology, Institute of
Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Purabi Sarkar
- Department
of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Kanchana M. Karuppiah
- Department
of Medical Research, Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Priyadharsan Arumugam
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Shanavas Shajahan
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Department
of Chemistry, Khalifa University of Science
and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for
Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tansir Ahamad
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ki-Choon Choi
- Grassland
and Forage Division, National Institute
of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Ajay Guru
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College
and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department
of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Velayutham M, Haridevamuthu B, Elsadek MF, Rizwana H, Juliet A, Karuppiah KM, Arockiaraj J. S-adenosylmethionine synthase-derived GR15 peptide suppresses proliferation of breast cancer cells by upregulating the caspase-mediated apoptotic pathway: In vitro and in silico analyses. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102354. [DOI: 10.1016/j.jksus.2022.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
7
|
Velayutham M, Sarkar P, Sudhakaran G, Al-Ghanim KA, Maboob S, Juliet A, Guru A, Muthupandian S, Arockiaraj J. Anti-Cancer and Anti-Inflammatory Activities of a Short Molecule, PS14 Derived from the Virulent Cellulose Binding Domain of Aphanomyces invadans, on Human Laryngeal Epithelial Cells and an In Vivo Zebrafish Embryo Model. Molecules 2022; 27:7333. [PMID: 36364155 PMCID: PMC9654460 DOI: 10.3390/molecules27217333] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 08/20/2023] Open
Abstract
In this study, the anti-cancer and anti-inflammatory activities of PS14, a short peptide derived from the cellulase binding domain of pathogenic fungus, Aphanomyces invadans, have been evaluated, in vitro and in vivo. Bioinformatics analysis of PS14 revealed the physicochemical properties and the web-based predictions, which indicate that PS14 is non-toxic, and it has the potential to elicit anti-cancer and anti-inflammatory activities. These in silico results were experimentally validated through in vitro (L6 or Hep-2 cells) and in vivo (zebrafish embryo or larvae) models. Experimental results showed that PS14 is non-toxic in L6 cells and the zebrafish embryo, and it elicits an antitumor effect Hep-2 cells and zebrafish embryos. Anticancer activity assays, in terms of MTT, trypan blue and LDH assays, showed a dose-dependent inhibitory effect on cell proliferation. Moreover, in the epithelial cancer cells and zebrafish embryos, the peptide challenge (i) caused significant changes in the cytomorphology and induced apoptosis; (ii) triggered ROS generation; and (iii) showed a significant up-regulation of anti-cancer genes including BAX, Caspase 3, Caspase 9 and down-regulation of Bcl-2, in vitro. The anti-inflammatory activity of PS14 was observed in the cell-free in vitro assays for the inhibition of proteinase and lipoxygenase, and heat-induced hemolysis and hypotonicity-induced hemolysis. Together, this study has identified that PS14 has anti-cancer and anti-inflammatory activities, while being non-toxic, in vitro and in vivo. Future experiments can focus on the clinical or pharmacodynamics aspects of PS14.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Bangalore 560 066, Karnataka, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| | | | - Shahid Maboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Saravanan Muthupandian
- AMR and Nanomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciencess (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai 603 203, Tamil Nadu, India
| |
Collapse
|
8
|
Velayutham M, Haridevamuthu B, Priya PS, Ganesh MR, Juliet A, Arockiaraj J. Serine O-acetyltransferase derived NV14 peptide reduces cytotoxicity in H 2O 2 induced MDCK cells and inhibits MCF-7 cell proliferation through caspase gene expression. Mol Biol Rep 2022; 49:9205-9215. [PMID: 35941417 DOI: 10.1007/s11033-022-07746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Most of the bioactive peptides exhibit antioxidant effect and do elicit inhibitory effect on proliferation of cancer cells. This study investigates the in-vitro antioxidant and anti-cancer properties of NV14 peptide, derived from serine O-acetyltransferase (SAT) of spirulina, Arthrospira platensis. METHODS The anti-cancer effect of the peptide was evaluated using human adenocarcinoma epithelial cells (MCF-7), while the anti-oxidant potential, as in reduction in ROS concentration, has been established using the H2O2-exposed, Madin-Darby canine kidney (MDCK) cells. The outcome of the in vitro analyses has been evaluated by in silico molecular docking analyses. RESULTS The peptide, dose-dependently, reduced oxidative stress as well as cell proliferation. Besides, based on the binding scores between NV14 peptide and the important proteins associated with apoptosis and antioxidant defense, it is evident that the peptide has antioxidant and anti-cancer effect, in vitro. CONCLUSIONS Together, this study demonstrates that NV14 has a potent antioxidant and anti-cancer capability; however, further direction needs to be focused on clinical or pharmacodynamics aspects.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India
| | - P Snega Priya
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India
| | - Munuswamy Ramanujam Ganesh
- Department of Chemistry, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai, 600 097, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Jubeen F, Ijaz S, Jabeen I, Aftab U, Mehdi W, Altaf A, Alissa SA, Al-Ghulikah HA, Ezzine S, Bejaoui I, Iqbal M. Anticancer potential of novel 5-Fluorouracil co-crystals against MCF7 breast and SW480 colon cancer cell lines along with docking studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Velayutham M, Guru A, Gatasheh MK, Hatamleh AA, Juliet A, Arockiaraj J. Molecular Docking of SA11, RF13 and DI14 Peptides from Vacuolar Protein Sorting Associated Protein 26B Against Cancer Proteins and In vitro Investigation of its Anticancer Potency in Hep-2 Cells. Int J Pept Res Ther 2022; 28:87. [DOI: 10.1007/s10989-022-10395-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
|
11
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
12
|
Manrique-Moreno M, Santa-González G, Gallego V. Bioactive cationic peptides as potential agents for breast cancer treatment. Biosci Rep 2021; 41:BSR20211218C. [PMID: 34874400 PMCID: PMC8655503 DOI: 10.1042/bsr20211218c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer continues to affect millions of women worldwide, and the number of new cases dramatically increases every year. The physiological causes behind the disease are still not fully understood. One in every 100 cases can occur in men, and although the frequency is lower than among women, men tend to have a worse prognosis of the disease. Various therapeutic alternatives to combat the disease are available. These depend on the type and progress of the disease, and include chemotherapy, radiotherapy, surgery, and cancer immunotherapy. However, there are several well-reported side effects of these treatments that have a significant impact on life quality, and patients either relapse or are refractory to treatment. This makes it necessary to develop new therapeutic strategies. One promising initiative are bioactive peptides, which have emerged in recent years as a family of compounds with an enormous number of clinical applications due to their broad spectrum of activity. They are widely distributed in several organisms as part of their immune system. The antitumoral activity of these peptides lies in a nonspecific mechanism of action associated with their interaction with cancer cell membranes, inducing, through several routes, bilayer destabilization and cell death. This review provides an overview of the literature on the evaluation of cationic peptides as potential agents against breast cancer under different study phases. First, physicochemical characteristics such as the primary structure and charge are presented. Secondly, information about dosage, the experimental model used, and the mechanism of action proposed for the peptides are discussed.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| | - Gloria A. Santa-González
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnólogico Metropolitano, A.A. 54959, Medellin, Colombia
| | - Vanessa Gallego
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Antioquia
| |
Collapse
|
13
|
Issac PK, Lite C, Guru A, Velayutham M, Kuppusamy G, Saraswathi NT, Al Olayan EM, Aloufi AS, Elokaby MA, Elumalai P, Arshad A, Arockiaraj J. Tryptophan-tagged peptide from serine threonine-protein kinase of Channa striatus improves antioxidant defence in L6 myotubes and attenuates caspase 3-dependent apoptotic response in zebrafish larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:293-311. [PMID: 33394283 DOI: 10.1007/s10695-020-00912-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 05/02/2023]
Abstract
This study reports the antioxidant property and molecular mechanism of a tryptophan-tagged peptide derived from a teleost fish Channa striatus of serine threonine-protein kinase (STPK). The peptide was tagged with tryptophan to enhance the antioxidant property of STPK and named as IW13. The antioxidant activity of IW13 peptide was investigated using in vitro methods such as DPPH, ABTS, superoxide anion radical scavenging and hydrogen peroxide scavenging assay. Furthermore, to investigate the toxicity and dose response of IW13 peptide on antioxidant defence in vitro, L6 myotubes were induced with generic oxidative stress due to exposure of hydrogen peroxide (H2O2). IW13 peptide exposure was found to be non-cytotoxic to L6 cells in the tested concentration (10, 20, 30, 40 and 50 μM). Also, the pre-treatment of IW13 peptide decreased the lipid peroxidation level and increased glutathione enzyme activity. IW13 peptide treatment upregulated the antioxidant enzyme genes: GPx (glutathione peroxidase), GST (glutathione S transferase) and GCS (glutamine cysteine synthase), in vitro in L6 myotubes and in vivo in zebrafish larvae against the H2O2-induced oxidative stress. The results demonstrated that IW13 renders protection against the H2O2-induced oxidative stress through a cellular antioxidant defence mechanism by upregulating the gene expression, thus enhancing the antioxidant activity in the cellular or organismal level. The findings exhibited that the tryptophan-tagged IW13 peptide from STPK of C. striatus could be a promising candidate for the treatment of oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Giva Kuppusamy
- Innovation and Technology Advancement Department, GK Aqua Sdn Bhd, Lot 563 Kg Sg Machang Ulu, 71750, Lenggeng, Negeri Sembilan, Malaysia
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Ebtesam M Al Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abeer S Aloufi
- Department of Zoology, Vaccines Research Unit, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Elokaby
- Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, 21556, Egypt
| | - Preetham Elumalai
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
14
|
Raju SV, Sarkar P, Kumar P, Arockiaraj J. Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 2021; 27:91-107. [DOI: 10.1007/s10989-020-10068-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023]
|
15
|
Guru A, Lite C, Freddy AJ, Issac PK, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Intracellular ROS scavenging and antioxidant regulation of WL15 from cysteine and glycine-rich protein 2 demonstrated in zebrafish in vivo model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103863. [PMID: 32918928 DOI: 10.1016/j.dci.2020.103863] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 05/02/2023]
Abstract
Antioxidant peptides are naturally present in food, especially in fishes, and are considered to contain rich source of various bioactive compounds that are structurally heterogeneous. This study aims to identify and characterize the antioxidant property of the WL15 peptide, derived from Cysteine and glycine-rich protein 2 (CSRP2) identified from the transcriptome of a freshwater food fish, Channa striatus. C. striatus is already studied to contain high levels of amino acids and fatty acids, besides traditionally known for its pharmacological benefits in the Southeast Asian region. In our study, in vitro analysis of WL15 peptide exhibited strong free radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), superoxide anion radical and hydrogen peroxide (H2O2) scavenging assay. Further, to evaluate the cytotoxicity and dose-response, the Human dermal fibroblast (HDF) cells were used. Results showed that the treatment of HDF cells with varying concentrations (10, 20, 30, 40 and 50 μM) of WL15 peptide was not cytotoxic. However, the treatment concentrations showed enhanced antioxidant properties by significantly inhibiting the levels of free radicals. For in vivo assessment, we have used zebrafish larvae for evaluating the developmental toxicity and for determining the antioxidant property of the WL15 peptide. Zebrafish embryos were treated with the WL15 peptide from 4 h of post-fertilization (hpf) to 96 hpf covering the embryo-larval developmental period. At the end of the exposure period, the larvae were exposed to H2O2 (1 mM) for inducing generic oxidative stress. The exposure of WL15 peptide during the embryo-larval period showed no developmental toxicity even in higher concentrations of the peptide. Besides, the WL15 peptide considerably decreased the intracellular reactive oxygen species (ROS) levels induced by H2O2 exposure. WL15 peptide also inhibited the H2O2-induced caspase 3-dependent apoptotic response in zebrafish larvae was observed using the whole-mount immunofluorescence staining. Overall results from our study showed that the pre-treatment of WL15 (50 μM) in the H2O2-exposed zebrafish larvae, attenuated the expression of activated caspase 3 expressions, reduced Malondialdehyde (MDA) levels, and enhanced antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT). The gene expression of antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxide (GPx) and γ-glutamyl cysteine synthetase (GCS) was found to be upregulated. In conclusion, it can be conceived that pre-treatment with WL15 could mitigate H2O2-induced oxidative injury by elevating the activity and expression of antioxidant enzymes, thereby decreasing MDA levels and cellular apoptosis by enhancing the antioxidant response, demonstrated by the in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, Tamil Nadu, India
| | - Allen J Freddy
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1 Sector 10 Jankipuram Extension Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, 613 401, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
16
|
Ravichandran G, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Innate immune function of serine/threonine-protein kinase from Macrobrachium rosenbergii in response to host-pathogen interactions. FISH & SHELLFISH IMMUNOLOGY 2020; 106:332-340. [PMID: 32758637 DOI: 10.1016/j.fsi.2020.07.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The occurrences of multiple drug-resistant strains have been relentlessly increasing in recent years. The aquaculture industry has encountered major disease outbreaks and crucially affected by this situation. The usage of non-specific chemicals and antibiotics expedites the stimulation of resistant strains. Triggering the natural defense mechanism would provide an effective and safest way of protecting the host system. Hence, we have investigated the innate immune function of serine/threonine-protein kinase (STPK) in Macrobrachium rosenbergii (Mr). The in-silico protein analysis resulted in the identification of cationic antimicrobial peptide, MrSL-19, with interesting properties from STPK of M. rosenbergii. Antimicrobial assay, FACS and SEM analysis demonstrated that the peptide potentially inhibits Staphylococcus aureus by interacting with its membrane. The toxic study on MrSL-19 demonstrated that the peptide is not toxic against HEK293 cells as well as human erythrocytes. This investigation showed the significant innate immune property of an efficient cationic antimicrobial peptide, MrSL-19 of STPK from M. rosenbergii.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|