1
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M, Narmani A, Farhood B. Recent advances of hyaluronic acid-based materials in drug delivery systems and regenerative medicine: A review. Arch Pharm (Weinheim) 2025; 358:e2400903. [PMID: 40091562 DOI: 10.1002/ardp.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Nowadays, diseases have a high rate of incidence and mortality worldwide. On the other side, the drawbacks of conventional modalities in the suppression of diseases have encountered serious problematic issues for the health of human beings. For instance, although various approaches have been applied for the treatment of cancer, it has an ever-increasing rate of incidence and mortality throughout the globe. Thus, there is a fundamental requirement for the development of breakthrough technologies in the inhibition of diseases. Hyaluronic acid (HA) is one of the most practical biopolymers in the suppression of diseases. HA has lots of potential physicochemical (like rheological, structural, molecular weight, and ionization, etc.) and biomedical properties (bioavailability, biocompatibility, CD44 targeting and signaling pathways, components of biological organs, mucoadhesion, immunomodulation, etc.), which made it a potential candidate for the development of breakthrough tools in pharmaceutical and biomedical sciences. The ease of surface modification (carboxylation, amidation, hydroxylation, and esterification), high bioavailability and synthesis routes, and various administration routes are considered as other merits of HA-based vehicles. These mucopolysaccharide HA-based materials have been considerably developed for use in drug delivery systems (DDSs), cancer therapy, wound healing, antiaging, and tissue engineering. This review summarizes the advantages of HA-based DDS and scaffolds in the treatment of diseases.
Collapse
Affiliation(s)
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| | - Asghar Narmani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Ha HC, Zhou D, Fu Z, Back MJ, Jang JM, Shin IC, Kim DK. Novel Effect of Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1) on Hair Follicle Cells Proliferation and Hair Growth. Biomol Ther (Seoul) 2023; 31:550-558. [PMID: 37551604 PMCID: PMC10468424 DOI: 10.4062/biomolther.2023.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Hair loss is a common condition that can have a negative impact on an individual's quality of life. The severe side effects and the low efficacy of current hair loss medications create unmet needs in the field of hair loss treatment. Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1), one of the components of the extracellular matrix, has been shown to play a role in maintaining its integrity. HAPLN1 was examined for its ability to impact hair growth with less side effects than existing hair loss treatments. HAPLN1 was predominantly expressed in the anagen phase in three stages of the hair growth cycle in mice and promotes the proliferation of human hair matrix cells. Also, recombinant human HAPLN1 (rhHAPLN1) was shown to selectively increase the levels of transforming growth factor-β receptor II in human hair matrix cells. Furthermore, we observed concomitant activation of the ERK1/2 signaling pathway following treatment with rhHAPLN1. Our results indicate that rhHAPLN1 elicits its cell proliferation effect via the TGF-β2-induced ERK1/2 pathway. The prompt entering of the hair follicles into the anagen phase was observed in the rhHAPLN1-treated group, compared to the vehicle-treated group. Insights into the mechanism underlying such hair growth effects of HAPLN1 will provide a novel potential strategy for treating hair loss with much lower side effects than the current treatments.
Collapse
Affiliation(s)
- Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| |
Collapse
|
3
|
Juhng S, Song J, You J, Park J, Yang H, Jang M, Kang G, Shin J, Ko HW, Jung H. Fabrication of liraglutide-encapsulated triple layer hyaluronic acid microneedles (TLMs) for the treatment of obesity. LAB ON A CHIP 2023; 23:2378-2388. [PMID: 36919574 DOI: 10.1039/d2lc01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Obesity is a chronic metabolic disease that is prevalent worldwide, causing complications that affect the quality of life and longevity of humans. Currently, the low bioavailability upon subcutaneous injection of an appetite suppressant, liraglutide, and health problems in the locally injected region remain to be overcome. In this study, we developed a novel hyaluronic acid-based liraglutide-encapsulated triple-layer microneedle (TLM) as a painless and patient-friendly long-term drug delivery system. In contrast to previous anti-obesity microneedle approaches, this TLM is composed of three layers for complete skin insertion, protecting the encapsulated liraglutide from environmental stresses. Daily topical application of the liraglutide-loaded TLM significantly reduced body weight and improved body composition in a mouse model of high-fat diet-induced obesity. Additionally, it ameliorated diet-induced hepatic steatosis in obese mice. This novel TLM could promote a glucagon-like peptide-1 drug release system for long-term daily administration with relatively higher patient compliance compared to subcutaneous injection.
Collapse
Affiliation(s)
- Seorin Juhng
- Department of Biotechnology, Building 123, Yonsei University, Seoul 03722, Korea.
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jeongyun You
- Department of Biotechnology, Building 123, Yonsei University, Seoul 03722, Korea.
| | - Jihyun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Huisuk Yang
- Juvic Inc. 272 Digital-ro, Guro-gu, Seoul 03722, Korea
| | - Mingyu Jang
- Juvic Inc. 272 Digital-ro, Guro-gu, Seoul 03722, Korea
| | - Geonwoo Kang
- Juvic Inc. 272 Digital-ro, Guro-gu, Seoul 03722, Korea
| | - Jiwoo Shin
- Department of Biotechnology, Building 123, Yonsei University, Seoul 03722, Korea.
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, Seoul 03722, Korea.
- Juvic Inc. 272 Digital-ro, Guro-gu, Seoul 03722, Korea
| |
Collapse
|
4
|
Seo JW, Jo S, Jung YS, Mijan MA, Cha J, Hong S, Byun S, Lim TG. Rosa gallica and its active compound, cyanidin-3,5-O-diglucoside, improve skin hydration via the GLK signaling pathway. Biofactors 2022; 49:415-427. [PMID: 36573713 DOI: 10.1002/biof.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022]
Abstract
Rosa gallica has been previously reported to display anti-inflammatory, anti-oxidative, and anti-skin wrinkle activities. However, the effect of Rosa gallica on skin hydration and its active components are largely unknown. Herein, we aimed to investigate the skin hydration effect of rose petal extract (RPE) in humans and elucidate the underlying molecular mechanism. A double-blinded clinical study was performed to investigate the effect of RPE on skin hydration. Stratum corneum moisture analysis demonstrated that RPE treatment significantly improved hydration levels in human skin. Furthermore, HAS2 and hyaluronic acid levels were notably increased by RPE in keratinocytes and 3D human skin equivalent model. By comparing the modulatory effect on HAS2 expression, cyanidin-3,5-O-diglucoside (CDG) was identified as the most potent compound in RPE likely responsible for skin hydration. The kinase activity of GLK, an upstream regulator of MAPK signaling, was increased by CDG in a dose-dependent manner. Importantly, silencing GLK reversed CDG-mediated HAS2 upregulation, further supporting the involvement of GLK in the CDG-mediated effects. Binding of CDG to GLK was confirmed by pull-down assay and computer modeling. These findings suggest that RPE and its active component CDG increases skin hydration by upregulating HAS2 expression through modulating the GLK-MAP2K-MAPK signaling pathway.
Collapse
Affiliation(s)
- Ji-Won Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seongin Jo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Mohammad-Al Mijan
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Joy Cha
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Seungpyo Hong
- Department of Molecular Biology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science and Biotechnology, Sejong University, Seoul, Republic of Korea
- R&D Center, NOVAWells Co., Ltd., Cheongju, South Korea
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Widgerow AD, Ziegler ME, Garruto JA, Mraz Robinson D, Palm MD, Vega JH, Bell M. Designing Topical Hyaluronic Acid technology - size does matter…. J Cosmet Dermatol 2022; 21:2865-2870. [PMID: 35486441 PMCID: PMC9540682 DOI: 10.1111/jocd.15027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Hyaluronic acid (HA) plays an important role in cellular and extracellular matrix (ECM) homeostasis. Recent studies demonstrate that low molecular weight (MW) HA has proinflammatory characteristics while high MW HA is considered anti-inflammatory and regenerative. In formulating a topical HA product, the possibility of creating a focused high MW HA technology was posed, combining external surface high MW HA constituents with active agents promoting fibroblast production of high MW in the depths of the dermis. METHODS Human dermal fibroblasts and keratinocytes were treated with various agents, and RNA sequencing (RNA-seq) was conducted to identify genes involved in HA synthesis. HA production by fibroblasts was assessed by collecting the culture supernatant, concentrating the protein, and conducting polyacrylamide gel electrophoresis (PAGE). The gel was stained with Stains-All to identify bands relative to known HA products of different MWs. Subsequently, the supernatants were treated with hyaluronidase to confirm the bands corresponded to HA. RESULTS The RNA-seq results revealed a variety of agents up-regulated HA-related genes. However, a potent upregulation of HA synthesis gene was observed by hexapeptide-11 in the keratinocytes and a newly identified proprietary octapeptide in the fibroblasts. PAGE demonstrated not only robust production of HA by octapeptide, but significantly, the HA produced was ~2 Mega Daltons in size. Octapeptide was the most potent stimulator among the tested agents. CONCLUSION Comprehensive in vitro testing identified a group of active agents that stimulated high MW HA production. This novel approach to HA topical application with exclusively high MW HA production should maximize hydration capacity while encouraging regenerative activity within in the ECM. Multi-center trials are underway.
Collapse
Affiliation(s)
- Alan D Widgerow
- Dept. of Plastic Surgery, University of California, Irvine.,Alastin
| | | | | | | | - Melanie D Palm
- Art of Skin MD, Solana Beach.,University of California, San Diego
| | | | | |
Collapse
|
6
|
Huang Y, Yu H, Wang L, Shen D, Ni Z, Ren S, Lu Y, Chen X, Yang J, Hong Y. Research progress on cosmetic microneedle systems: Preparation, property and application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Kapoor KM, Saputra DI, Porter CE, Colucci L, Stone C, Brenninkmeijer EEA, Sloane J, Sayed K, Winaya KK, Bertossi D. Treating Aging Changes of Facial Anatomical Layers with Hyaluronic Acid Fillers. Clin Cosmet Investig Dermatol 2021; 14:1105-1118. [PMID: 34471372 PMCID: PMC8405095 DOI: 10.2147/ccid.s294812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
The aging process affects every anatomical layer of the face. Improved knowledge of how aging occurs in each anatomical layer of the face has helped evolve the facial rejuvenation strategies with HA fillers. Understanding the age-related changes in the anatomical facial layers, including their time of onset and how the changes occur in the different tissue layers, an injector can provide much more targeted and refined HA filler treatments. As fillers’ use has increased, there has been a distinct shift away from procedures lifting the skin and SMAS. We can selectively target the anatomical facial layers with HA fillers for more refined and predictable outcomes. An extensive range of HA filler variants is now available. Each filler type is optimized and designed to be injected into specific tissue planes for the best results. Knowing the predictable aging changes in the different tissue layers of the face is crucial as this guides the optimum filler choice. Working knowledge of the individual characteristics of the numerous HA-based products allows for their effective placement in the correct layer. Familiarity with the correct HA product may also help to minimize the downtime and risk of adverse events.
Collapse
Affiliation(s)
- Krishan Mohan Kapoor
- Anticlock Clinic, Chandigarh, India.,Department of Plastic Surgery, Fortis Hospital, Mohali, India
| | | | | | | | | | | | - Jake Sloane
- Infinity Skin Clinic, Surry Hill, NSW, Australia
| | - Karim Sayed
- Faculty of Health and Social Sciences, University of South-East Norway, Drammen, Norway
| | | | - Dario Bertossi
- Department of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Gruber JV, Holtz R, Riemer J. Hyaluronic acid (HA) stimulates the in vitro expression of CD44 proteins but not HAS1 proteins in normal human epidermal keratinocytes (NHEKs) and is HA molecular weight dependent. J Cosmet Dermatol 2021; 21:1193-1198. [PMID: 33908161 DOI: 10.1111/jocd.14188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In the skin, hyaluronic acid is broken down to smaller fragments by hyaluronidase enzymes, particularly when skin is wounded. The impact of various molecular weight fragments of HA on normal human epidermal keratinocytes (NHEK) with regard to expression of important cellular proteins has not been deeply explored. AIMS Examination of three molecular weight (Mw) fractions of hyaluronic acid: 1) average Mw of the high fraction: 1.5-2 MDa, 2) average Mw of the medium fraction: 200-500 kDa, and 3) average Mw of the low fraction: 5-10 kDa and a unique 1:1:1 composite complex of the three HA fragments (Triluronic® Acid) was done to examine the influence of the HA on two critical skin cell protein targets: hyaluronan synthase-1 (HAS-1) and the HA binding protein cluster of differentiation 44 (CD44). METHODS NHEKs were treated in vitro with a 1.0% stock solution of each HA Mw fraction at 1.0, 0.5, and 0.1% concentrations of the 1.0% solution and the polysaccharide composite at the same concentrations for 48 Hrs. The cells were than analyzed by ELISA protein assays for HAS-1 and CD44 protein content. RESULTS Examination of HAS-1 protein expression indicates that none of the HA test materials influenced the expression of HAS-1 at any concentration. Examination of the CD44 protein expression indicated that the low Mw fraction and the commercial complex of the three Mw fractions upregulated CD44 protein expression in NHEKs, but the medium Mw and high Mw HA fractions did not. CONCLUSIONS In this work, it was demonstrated that HA can influence the expression of CD44 protein, a critical HA transmembrane HA binding protein, and the influence appears to be molecular weight dependent.
Collapse
|