1
|
de Jager S, Vermeulen A, De Baere S, Van der Stede T, Lievens E, Croubels S, Jäger R, Purpura M, Bourgois JG, Derave W. Acute balenine supplementation in humans as a natural carnosinase-resistant alternative to carnosine. Sci Rep 2023; 13:6484. [PMID: 37081019 PMCID: PMC10119279 DOI: 10.1038/s41598-023-33300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Balenine possesses some of carnosine's and anserine's functions, yet it appears more resistant to the hydrolysing CN1 enzyme. The aim of this study was to elucidate the stability of balenine in the systemic circulation and its bioavailability in humans following acute supplementation. Two experiments were conducted in which (in vitro) carnosine, anserine and balenine were added to plasma to compare degradation profiles and (in vivo) three increasing doses (1-4-10 mg/kg) of balenine were acutely administered to 6 human volunteers. Half-life of balenine (34.9 ± 14.6 min) was respectively 29.1 and 16.3 times longer than that of carnosine (1.20 ± 0.36 min, p = 0.0044) and anserine (2.14 ± 0.58 min, p = 0.0044). In vivo, 10 mg/kg of balenine elicited a peak plasma concentration (Cmax) of 28 µM, which was 4 and 18 times higher than with 4 (p = 0.0034) and 1 mg/kg (p = 0.0017), respectively. CN1 activity showed strong negative correlations with half-life (ρ = - 0.829; p = 0.0583), Cmax (r = - 0.938; p = 0.0372) and incremental area under the curve (r = - 0.825; p = 0.0433). Overall, balenine seems more resistant to CN1 hydrolysis resulting in better in vivo bioavailability, yet its degradation remains dependent on enzyme activity. Although a similar functionality as carnosine and anserine remains to be demonstrated, opportunities arise for balenine as nutraceutical or ergogenic aid.
Collapse
Affiliation(s)
- Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Department of Nutrition, Exercise and Sports, Copenhagen University, Nørre Allé 51, 2200, Copenhagen, Denmark
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ralf Jäger
- Increnovo LLC, 730 E. Carlisle Avenue, Whitefish Bay, WI, 53217, USA
| | - Martin Purpura
- Increnovo LLC, 730 E. Carlisle Avenue, Whitefish Bay, WI, 53217, USA
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Morozova OB, Yurkovskaya AV. Reduction of transient carnosine radicals depends on β-alanyl amino group charge. Phys Chem Chem Phys 2023; 25:7704-7710. [PMID: 36866760 DOI: 10.1039/d2cp04933c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Reduction of transient carnosine (β-alanyl-L-histidine) radicals by L-tryptophan, N-acetyl tryptophan, and the Trp-Gly peptide in neutral and basic aqueous solutions was studied using the technique of time-resolved chemically induced dynamic nuclear polarization (TR CIDNP). Carnosine radicals were generated in the photoinduced reaction with triplet excited 3,3',4,4'-tetracarboxy benzophenone. In this reaction, carnosine radicals with their radical center at the histidine residue are formed. Modeling of CIDNP kinetic data allowed for the determination of pH-dependent rate constants of the reduction reaction. It was shown that the protonation state of the amino group of the non-reacting β-alanine residue of the carnosine radical affects the rate constant of the reduction reaction. The results were compared to those obtained previously for the reduction of histidine and N-acetyl histidine free radicals and to newly obtained results for the reduction of radicals derived from Gly-His, a homologue of carnosine. Clear differences were demonstrated.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia.
| | | |
Collapse
|
3
|
Chen W, Stolz S, Wegbecher V, Parakkattel D, Haeuser C, Oltra NS, Kishore RSK, Bond S, Bell C, Kopf R. The degradation of poloxamer 188 in buffered formulation conditions. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPoloxamer 188 (P188) as a non-ionic surfactant is used in proteinaceous formulations to prevent protein adsorption to hydrophobic surfaces and unfolding at interfaces, preventing the formation of aggregates and particles. Its chemical intactness is crucial to the stability of drug products due to its protecting effects at interfaces. In order to identify and mitigate potential risks that might cause the degradation of P188 during the manufacturing process and storage, in the current work, the stability of P188 was investigated by forced degradation in buffered formulation conditions via oxidation and thermal stress conditions. The process of degradation was monitored through the dedicated liquid adsorption chromatography (LAC) with high sensitivity, and the degradants were characterized by high-resolution mass spectrometry. Results suggest that the vulnerability of P188 is largely related to the buffer conditions. Histidine promotes degradation in the presence of hydroxyl radicals but inhibits the degradation in the presence of H2O2 and alkyl radicals. In thermal stress conditions, histidine protects P188 from degradation at 40 °C, and activates its decay only at higher temperature, like 60 °C.
Collapse
|
4
|
Hiemori-Kondo M, Shinya D, Ueta R. Development of a quantitative method for analyzing three imidazole dipeptides using high-performance liquid chromatography and its application for meat and fish. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ishihara K, Watanabe R, Kato T, Seko T, Matsuda T, Omura Y, Shigemura Y, Kawabata Y, Maegawa T. Isolation of balenine from opah (Lampris megalopsis) muscle and comparison of antioxidant and iron-chelating activities with other major imidazole dipeptides. Food Chem 2021; 364:130343. [PMID: 34246912 DOI: 10.1016/j.foodchem.2021.130343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Balenine (Bal) in opah muscle was extracted using hot water and purified by ion-exchange chromatography and recrystallization to provide 41 g of over 95% pure Bal from 1 kg of opah muscle. The structure of purified Bal was identical to that of an authentic Bal standard by NMR analysis. The antioxidant (ORAC and HORAC values) and Fe(II) ion-chelating abilities of purified Bal were examined by comparison with two major imidazole dipeptides, carnosine (Car) and anserine (Ans). Opah-derived Bal showed significantly higher ORAC and HORAC values and Fe(II) ion-chelating ability at 0.3 mM. In silico molecular simulation revealed that Bal and Car formed hydrogen bonds between the hydrogen atom of the imidazole imino group and the carboxyl carbonyl oxygen, whereas Ans did not. The proposed method for extracting and purifying Bal from opah muscle suggests that opah can be utilized as a functional food or Bal resource.
Collapse
Affiliation(s)
- Kenji Ishihara
- Seafood Safety and Technology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency. Yokohama, Japan.
| | - Ryuichi Watanabe
- Seafood Safety and Technology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency. Yokohama, Japan
| | - Tomomi Kato
- Seafood Safety and Technology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency. Yokohama, Japan
| | - Takuya Seko
- Seafood Safety and Technology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency. Yokohama, Japan
| | - Takashi Matsuda
- Seafood Safety and Technology Division, Fisheries Technology Institute, Japan Fisheries Research and Education Agency. Yokohama, Japan
| | - Yuji Omura
- Marine Fisheries Research and Development Center, Japan Fisheries Research and Education Agency. Yokohama, Japan
| | - Yasutaka Shigemura
- Department of Nutrition, Faculty of Domestic Science, Tokyo Kasei University. Tokyo, Japan
| | | | | |
Collapse
|
6
|
Morozova OB, Yurkovskaya AV. Reduction of transient histidine radicals by tryptophan: influence of the amino group charge. Phys Chem Chem Phys 2021; 23:5919-5926. [PMID: 33662075 DOI: 10.1039/d0cp06366e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Second-order rate constants of the reduction of histidine radicals by tryptophan were obtained for all combinations of the two amino acids and their N-acetyl derivatives. For the dipeptide N-acetyl histidine-tryptophan, contributions from inter- and intramolecular reduction were revealed. The pH dependences of the rate constants were found to be determined by the protonation state of the amino group of tryptophan. Proton coupled electron transfer is proposed as a reaction mechanism.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia.
| | | |
Collapse
|
7
|
Ozawa H, Hirayama A, Ishikawa T, Kudo R, Maruyama M, Shoji F, Doke T, Ishimoto T, Maruyama S, Soga T, Tomita M. Comprehensive Dipeptide Profiling and Quantitation by Capillary Electrophoresis and Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal Chem 2020; 92:9799-9806. [DOI: 10.1021/acs.analchem.0c01258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hitoshi Ozawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Ryuhei Kudo
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Nissin Pharmaceutical Co., Ltd., 2-3-1 Shogehigashi, Tendo, Yamagata 994-0069, Japan
| | - Midori Maruyama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Futaba Shoji
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomohito Doke
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami,
Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| |
Collapse
|