1
|
Ebrahimi M, Sadjjadi SM, Bidroni FT, Javadi Mamaghani A, Mohammadzadeh T, Heydarifard Z, Seyyed Tabaei SJ. Developing a serological test for the diagnosis of toxocarasis using a novel recombinant multi-epitope. Microb Pathog 2025; 204:107576. [PMID: 40228753 DOI: 10.1016/j.micpath.2025.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/14/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Human toxocariasis, a zoonotic infection caused by the ingestion of embryonated eggs of Toxocara canis (T. canis) or Toxocara cati (T. cati), or by consuming paratenic hosts, is characterized by diverse clinical manifestations. Diagnosis of this disease predominantly relies on serological testing, for which the selection of appropriate antigens is crucial to ensure accurate detection. Prior research has highlighted the potential of multi-epitope antigens to improve diagnostic precision. This study focused on evaluating the immunogenicity of synthetic proteins containing multiple immunodominant epitopes derived from T. canis antigens, specifically Toxocara excretory-secretory (TES) proteins TES-120, TES-30, and TES-26. A multi-epitope structure was designed, synthesized, and cloned into the pET28-b expression plasmid. The plasmid was then introduced into Escherichia coli (E. coli) BL21 competent cells, and the recombinant protein was expressed and purified after 16 h of bacterial cultivation. The diagnostic utility of the recombinant antigen for detecting anti-toxocariasis IgG antibodies was evaluated using an indirect Enzyme-Linked Immunosorbent Assay (ELISA). The results showed a sensitivity of 94.2 % and a specificity of 100 %, indicating high diagnostic accuracy. These findings underscore the potential of the synthetic multi-epitope recombinant antigen as a valuable diagnostic tool for improving the accuracy of human toxocariasis diagnostic kits. The designed multi-epitope proteins exhibit strong potential as diagnostic markers, offering high sensitivity and specificity for the development of indirect ELISA-based diagnostic assays. This study contributes to the development of more reliable and precise diagnostic tools for toxocariasis.
Collapse
Affiliation(s)
- Maryam Ebrahimi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Tahvildar Bidroni
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Javadi Mamaghani
- Hepatitis Research Center, Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Tahereh Mohammadzadeh
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Parasitology and Mycology, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Heydarifard
- Hepatitis Research Center, Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Vargas-Montes M, Valencia-Jaramillo MC, Valencia-Hernández JD, Gómez-Marín JE, Arenas AF, Cardona N. In silico identification and ex vivo evaluation of Toxoplasma gondii peptides restricted to HLA-A*02, HLA-A*24 and HLA-B*35 alleles in human PBMC from a Colombian population. Med Microbiol Immunol 2024; 214:5. [PMID: 39738923 DOI: 10.1007/s00430-024-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Toxoplasma gondii infects approximately 30% of the population, and there is currently no approved vaccine. Identifying immunogenic peptides with high affinity to different HLA molecules is a promising vaccine strategy. This study used an in silico approach using artificial neural networks to identify T. gondii peptides restricted to HLA-A*02, HLA-A*24, and HLA-B*35 alleles. Proteomes from seven T. gondii strains and transcriptomic data of overexpressed genes from T. gondii-RH in human PBMC were also used. Parasite protein sequences were analyzed with R 'Epitope Prediction' library. Peptide candidates were evaluated in the artificial neural networks based on the probabilities of output neurons (p > 0.5). The IFN-γ responses in PBMC from T. gondii seronegative and seropositive individuals were evaluated by ELISpot. Peptides with higher IFN-γ induction were evaluated to identify cytotoxic response in CD8+ T cells (CD107a). In silico analysis identified 36 peptides from T. gondii proteins with predicted affinity to HLA-A*02, A*24, and B*35 alleles. Experiments with PBMCs revealed that a peptide restricted to HLA-A02 (P1: FLFAWITYV) induced a significant increase in IFN-γ-producing cells (p = 0.004). For HLA-A24, a peptide (P8: VFAFAFAFFLI) also induced a significant IFN-γ response (p = 0.004), while for the HLA-B*35 allele, the P6 peptide (YPIAPSFAM) induced a response that differed significantly from the control (p = 0.05). These peptides induced also a significant percentage of central memory CD8 + T cells expressing the degranulation marker CD107a (p < 0.05). Finally, we identified three T. gondii peptides that induced IFN-γ response, and a cytotoxic response measured by CD107a expression on CD45RAneg-CD8 cells. These peptides could be considered part of a multi-epitope vaccine against toxoplasmosis in humans.
Collapse
Affiliation(s)
- Mónica Vargas-Montes
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Faculty of Health Sciences, Centro de Investigaciones Biomédicas, Universidad del Quindío, Quindio, Armenia, Colombia
| | - María Camila Valencia-Jaramillo
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Faculty of Health Sciences, Centro de Investigaciones Biomédicas, Universidad del Quindío, Quindio, Armenia, Colombia
| | - Juan David Valencia-Hernández
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Faculty of Health Sciences, Centro de Investigaciones Biomédicas, Universidad del Quindío, Quindio, Armenia, Colombia
| | - Jorge Enrique Gómez-Marín
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Faculty of Health Sciences, Centro de Investigaciones Biomédicas, Universidad del Quindío, Quindio, Armenia, Colombia
| | - Ailan Farid Arenas
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Faculty of Health Sciences, Centro de Investigaciones Biomédicas, Universidad del Quindío, Quindio, Armenia, Colombia
| | - Néstor Cardona
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Faculty of Health Sciences, Centro de Investigaciones Biomédicas, Universidad del Quindío, Quindio, Armenia, Colombia.
- Faculty of Dentistry, Universidad Antonio Nariño, Quindio, Armenia, Colombia.
| |
Collapse
|
3
|
Kim MJ, Park SJ, Park H. Trend in serological and molecular diagnostic methods for Toxoplasma gondii infection. Eur J Med Res 2024; 29:520. [PMID: 39468639 PMCID: PMC11520523 DOI: 10.1186/s40001-024-02055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Toxoplasma gondii, an intracellular parasite, is a significant cause of zoonotic disease, with an estimated one-third of the world's human population believed to be infected. T. gondii is transmitted to humans through the consumption of contaminated water, soil, vegetables, fruits, shellfish or undercooked meat, and can also be passed from human to human through vertical transmission, transplants and blood transfusion. While T. gondii infection typically manifests mild symptoms such as colds among immunocompetent individuals, it can prove lethal for those with weakened immune systems. METHODS To summarize the diagnostic methods for Toxoplasma gondii infection, we performed a literature search on PubMed from 1948 to 2023 using the keywords "T. gondii serological diagnosis" or "T. gondii molecular diagnosis". RESULTS Rapid and accurate diagnosis of T. gondii infection is imperative. Although a diagnostic kit is currently commercially available, there are a number of disadvantages to the validation principles applied to each diagnostic kit. Consequently, multiple diagnostic methods are concurrently employed to offset these limitations. Serological methods for diagnosing T. gondii infection include the Dye Test (DT), Agglutination Test (AT), Modified Agglutination Test (MAT), Latex Agglutination Test (LAT), Enzyme-Linked Immunosorbent Assay (ELISA), and Western Blot. Meanwhile, molecular methods such as polymerase chain reaction (PCR), nested PCR, real-time PCR, loop-mediated isothermal amplification (LAMP), multiplex PCR, and PCR-restriction fragment length polymorphism (PCR-RFLP) are also utilized. Each of these methods possess its own set of advantages and disadvantages. CONCLUSIONS By summarizing the advantages and disadvantages of different diagnostic techniques, it is hoped that the epidemiology, prevention, and control of toxoplasmosis will be improved in the future through the use of appropriate technologies.
Collapse
Affiliation(s)
- Min-Ju Kim
- Health Park Co., Ltd, Seoul, 02447, Republic of Korea
| | - Soeun J Park
- Epigenix Innovation, Destin, Florida, 32541, USA
- Niceville High School, Niceville, Florida, 32578, USA
| | - Hyunwoo Park
- Health Park Co., Ltd, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Norouzi M, Niyyati M, Ghorbani-Bidkorpeh F, Javadi Mamaghani A, Seyyed Tabaei SJ. Evaluation of the efficacy of Chitosan nanoparticles based on Rosuvastatin in the treatment of acute toxoplasmosis: An In vitro and In vivo study. Microb Pathog 2024; 195:106897. [PMID: 39208959 DOI: 10.1016/j.micpath.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Toxoplasma gondii (T.gondii) is an obligate intracellular protozoan that infects warm-blooded animals and has a global distribution. Acute toxoplasmosis is commonly reported in patients with acquired/congenital toxoplasmosis and immune deficiency. New methods are needed to prevent the sideffects of classical treatment. In this study, Rosuvastatin loaded chitosan nanoparticle (CH-NP-ROS) were synthesized and zeta potential and size were determined, and an MTT assay was performed to evaluate the cell toxicity on Macrophage cells (MQ) and anti-Toxoplasma activity using Trypan-blue staining by different concentrations of Rosuvastatin (ROS), and Rosuvastatin loaded chitosan nanoparticle (CH-NP-ROS). The cell viability assay demonstrated that CH-NP-ROS had lower cell toxicity (<15 %) compared to ROS (<30 %). Statistical analysis showed that CH-NP-ROS significantly killed 98.950 ± 1.344; P < 0.05) of Toxoplasma gondii tachyzoites. In vivo results of perituneal fluid showed that CH-NP significantly reduced the parasite load in the CH-NP-ROS group, compared to that in negative control group (P < 0.001). Growth inhibition rates of tachyzoites in mice receiving free ROS and CH-NP-ROS (injection and oral form) were found to be 166.125 + 4.066, 118.750 + 4.596 and 124.875 + 2.652, respectively, compared to mice in Sulfadiazine/Pyrimethamine treated group (positive control). In the infected untreated mice (control +), the mean tachyzoite counts per oil immersion field in the spleen was 8.25 respectively. The mean survival time in all the groups treated with ROS and CH-NP-ROS was longer than that in the negative control group Therefore, nanoformulation is a promising approach for the delivery and is safe for using therapeutic effects in acute toxoplasmosis.
Collapse
Affiliation(s)
- Maryam Norouzi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Javadi Mamaghani
- Hepatitis Research Center, Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ghaffari AD, Rahimi F. Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis. Clin Exp Vaccine Res 2024; 13:146-154. [PMID: 38752002 PMCID: PMC11091428 DOI: 10.7774/cevr.2024.13.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology and Mycology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fardin Rahimi
- Department of Medical biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
6
|
Mamaghani AJ, Fathollahi A, Arab-Mazar Z, kohansal K, Fathollahi M, Spotin A, Bashiri H, Bozorgomid A. Toxoplasma gondii vaccine candidates: a concise review. Ir J Med Sci 2023; 192:231-261. [PMID: 35394635 PMCID: PMC8992420 DOI: 10.1007/s11845-022-02998-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis. It has been shown that the severity of symptoms depends on the functioning of the host immune system. Although T. gondii infection typically does not lead to severe disease in healthy people and after infection, it induces a stable immunity, but it can contribute to severe and even lethal Toxoplasmosis in immunocompromised individuals (AIDS, bone marrow transplant and neoplasia). The antigens that have been proposed to be used in vaccine candidate in various studies include surface antigens and secretory excretions that have been synthesized and evaluated in different studies. In some studies, secretory antigens play an important role in stimulating the host immune response. Various antigens such as SAG, GRA, ROP, ROM, and MAG have been from different strains of T. gondii have been synthesized and their protective effects have been evaluated in animal models in different vaccine platforms including recombinant antigens, nanoparticles, and DNA vaccine. Four bibliographic databases including Science Direct, PubMed Central (PMC), Scopus, and Google Scholar were searched for articles published up to 2020.The current review article focuses on recent studies on the use and usefulness of recombinant antigens, nanoparticles, and DNA vaccines.
Collapse
Affiliation(s)
- Amirreza Javadi Mamaghani
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anwar Fathollahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arab-Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra kohansal
- Department of Medical Parasitology, School of Medicine, Jondishapour University of Medical Sciences, Ahvaz, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homayoon Bashiri
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Rashidi S, Faraji SN, Mamaghani AJ, Hatam S, Kazemi B, Bemani P, Tabaei SJS, Hatam G. Bioinformatics analysis for the purpose of designing a novel multi-epitope DNA vaccine against Leishmania major. Sci Rep 2022; 12:18119. [PMID: 36302830 PMCID: PMC9612607 DOI: 10.1038/s41598-022-22646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Leishmaniasis is one of the main infectious diseases worldwide. In the midst of all the different forms of the disease, Cutaneous Leishmania (CL) has the highest incidence in the world. Many trial vaccines have been developed with the purpose of generating long-term cell-mediated immunity to Leishmania(L) major. As there is not any multi-epitope DNA vaccine with high efficacy against L.major, the aim of this study is to design a new multi-epitope DNA vaccine in order to have effective control upon this infectious disease through the immune bioinformatics. The L.major antigens: Gp63, LACK, TSA, LmSTI1and KMP11 were selected to design a multi-epitope DNA vaccine. The initial structure of the DNA vaccine was designed, benefiting from Gen Bank's website information. Epitopes of MHC-I antigens were predicted through the Immune Epitope Database (IEDB), and the selected epitopes were used to make vaccines construct along with linkers. New multi-epitope vaccine including 459 nucleic acids designed, and inserted between BamH1 and HindIII restriction sites of pCDNA3.1 mammalian expression vector. 12 epitopes among the chosen antigens were selected by two servers (IEDB and ANTIGEN). They had high stability and high antigenic power. Physicochemical features of vaccine measured by ProtParam server, and this structure was thermostable and hydrophilic. it's a suitable model to study on the animal and human phases. The designed vaccine is expected to be an effective candidate through development of (CL) vaccines. However, the effectiveness of this vaccine should also evaluate in vivo model.
Collapse
Affiliation(s)
- Sama Rashidi
- grid.412571.40000 0000 8819 4698Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- grid.412571.40000 0000 8819 4698School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Javadi Mamaghani
- grid.411600.2Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Hatam
- Science and Technology Park of Fars, ExirBitanic Company, Shiraz, Iran
| | - Bahram Kazemi
- grid.411600.2Cellular and Molecular Biology Research Center Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Bemani
- grid.411036.10000 0001 1498 685XDepartment of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed Javad Seyyed Tabaei
- grid.411600.2Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hatam
- Science and Technology Park of Fars, ExirBitanic Company, Shiraz, Iran ,grid.412571.40000 0000 8819 4698 Basic Sciences in Infectious diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
9
|
Javadi Mamaghani A, Arab-Mazar Z, Heidarzadeh S, Ranjbar MM, Molazadeh S, Rashidi S, Niazpour F, Naghi Vishteh M, Bashiri H, Bozorgomid A, Behniafar H, Ashrafi M. In-silico design of a multi-epitope for developing sero-diagnosis detection of SARS-CoV-2 using spike glycoprotein and nucleocapsid antigens. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 10:61. [PMID: 34849326 PMCID: PMC8614630 DOI: 10.1007/s13721-021-00347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/03/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is a pandemic disease caused by novel corona virus, SARS-CoV-2, initially originated from China. In response to this serious life-threatening disease, designing and developing more accurate and sensitive tests are crucial. The aim of this study is designing a multi-epitope of spike and nucleocapsid antigens of COVID-19 virus by bioinformatics methods. The sequences of nucleotides obtained from the NCBI Nucleotide Database. Transmembrane structures of proteins were predicted by TMHMM Server and the prediction of signal peptide of proteins was performed by Signal P Server. B-cell epitopes' prediction was performed by the online prediction server of IEDB server. Beta turn structure of linear epitopes was also performed using the IEDB server. Conformational epitope prediction was performed using the CBTOPE and eventually, eight antigenic epitopes with high physicochemical properties were selected, and then, all eight epitopes were blasted using the NCBI website. The analyses revealed that α-helices, extended strands, β-turns, and random coils were 28.59%, 23.25%, 3.38%, and 44.78% for S protein, 21.24%, 16.71%, 6.92%, and 55.13% for N Protein, respectively. The S and N protein three-dimensional structure was predicted using the prediction I-TASSER server. In the current study, bioinformatics tools were used to design a multi-epitope peptide based on the type of antigen and its physiochemical properties and SVM method (Machine Learning) to design multi-epitopes that have a high avidity against SARS-CoV-2 antibodies to detect infections by COVID-19.
Collapse
Affiliation(s)
- Amirreza Javadi Mamaghani
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arab-Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Shima Molazadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research Branch, Olom Tahghighat Islamic Azad University, Tehran, Iran
| | - Sama Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Niazpour
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohadeseh Naghi Vishteh
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homayoon Bashiri
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Behniafar
- Department of Medical Parasitology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | | |
Collapse
|