1
|
Harshitha M, D'souza R, Disha S, Akshath US, Dubey S, Munang'andu HM, Chakraborty A, Karunasagar I, Maiti B. Polylactic-Co-glycolic Acid Polymer-Based Nano-Encapsulation Using Recombinant Maltoporin of Aeromonas hydrophila as Potential Vaccine Candidate. Mol Biotechnol 2025; 67:1178-1187. [PMID: 38512427 DOI: 10.1007/s12033-024-01117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Aquaculture production has been incurring economic losses due to infectious diseases by opportunistic pathogens like Aeromonas hydrophila, a bacterial agent that commonly affects warm water aquacultured fish. Developing an effective vaccine with an appropriate delivery system can elicit an immune response that would be a useful disease management strategy through prevention. The most practical method of administration would be the oral delivery of vaccine developed through nano-biotechnology. In this study, the gene encoding an outer membrane protein, maltoporin, of A. hydrophila, was identified, sequenced, and studied using bioinformatics tools to examine its potential as a vaccine candidate. Using a double emulsion method, the molecule was cloned, over-expressed, and encapsulated in a biodegradable polymer polylactic-co-glycolic acid (PLGA). The immunogenicity of maltoporin was identified through in silico analysis and thus taken up for nanovaccine preparation. The encapsulation efficiency of maltoporin was 63%, with an in vitro release of 55% protein in 48 h. The particle size and morphology of the encapsulated protein exhibited properties that could induce stability and function as an effective carrier system to deliver the antigen to the site and trigger immune response. Results show promise that the PLGA-mediated delivery system could be a potential carrier in developing a fish vaccine via oral administration. They provide insight for developing nanovaccine, since sustained in vitro release and biocompatibility were observed. There is further scope to study the immune response and examine the protective immunity induced by the nanoparticle-encapsulated maltoporin by oral delivery to fish.
Collapse
Affiliation(s)
- Mave Harshitha
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research, Department of Bio and Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Ruveena D'souza
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research, Department of Bio and Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Somanath Disha
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research, Department of Bio and Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Uchangi Satyaprasad Akshath
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research, Department of Bio and Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India
| | - Saurabh Dubey
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anirban Chakraborty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Molecular Genetics and Cancer, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to Be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research, Department of Bio and Nano Technology, Paneer Campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
2
|
Truong NHM, Nguyen Q, Voong PV, Chau V, Nguyen NHT, Nguyen THM, Vo PH, Nguyen LT, Ha TTP, Nguyen LPH, Le PH, Thanh DP, Nguyen HD. Genomic characterization of Aeromonas spp. isolates from striped catfish with motile Aeromonas septicemia and human bloodstream infections in Vietnam. Microb Genom 2024; 10:001248. [PMID: 38739115 PMCID: PMC11165649 DOI: 10.1099/mgen.0.001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Aeromonas spp. are commonly found in the aquatic environment and have been responsible for motile Aeromonas septicemia (MAS) in striped catfish, resulting in significant economic loss. These organisms also cause a range of opportunistic infections in humans with compromised immune systems. Here, we conducted a genomic investigation of 87 Aeromonas isolates derived from diseased catfish, healthy catfish and environmental water in catfish farms affected by MAS outbreaks in eight provinces in Mekong Delta (years: 2012-2022), together with 25 isolates from humans with bloodstream infections (years: 2010-2020). Genomics-based typing method precisely delineated Aeromonas species while traditional methods such as aerA PCR and MALDI-TOF were unable identify A. dhakensis. A. dhakensis was found to be more prevalent than A. hydrophila in both diseased catfish and human infections. A. dhakensis sequence type (ST) 656 followed by A. hydrophila ST251 were the predominant virulent species-lineages in diseased catfish (43.7 and 20.7 %, respectively), while diverse STs were found in humans with bloodstream infections. There was evidence of widespread transmission of ST656 and ST251 on striped catfish in the Mekong Delta region. ST656 and ST251 isolates carried a significantly higher number of acquired antimicrobial resistance (AMR) genes and virulence factors in comparison to other STs. They, however, exhibited several distinctions in key virulence factors (i.e. lack of type IV pili and enterotoxin ast in A. dhakensis), AMR genes (i.e. presence of imiH carbapenemase in A. dhakensis), and accessory gene content. To uncover potential conserved proteins of Aeromonas spp. for vaccine development, pangenome analysis has unveiled 2202 core genes between ST656 and ST251, of which 78 proteins were in either outer membrane or extracellular proteins. Our study represents one of the first genomic investigations of the species distribution, genetic landscape, and epidemiology of Aeromonas in diseased catfish and human infections in Vietnam. The emergence of antimicrobial resistant and virulent A. dhakensis strains underscores the needs of enhanced genomic surveillance and strengthening vaccine research and development in preventing Aeromonas diseases in catfish and humans, and the search for potential vaccine candidates could focus on Aeromonas core genes encoded for membrane and secreted proteins.
Collapse
Affiliation(s)
- Nhat Ha Minh Truong
- Center for Bioscience and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Quynh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phat Vinh Voong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nhi Huynh Thanh Nguyen
- Center for Bioscience and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tuan Hoa Minh Nguyen
- Center for Bioscience and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuong Hong Vo
- Vietnam National University, Ho Chi Minh City, Vietnam
- Research Institute for Aquaculture No.2, Ho Chi Minh City, Vietnam
| | | | | | | | - Phuoc Hong Le
- Research Institute for Aquaculture No.2, Ho Chi Minh City, Vietnam
| | - Duy Pham Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hoang Duc Nguyen
- Center for Bioscience and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|