1
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Zhang X, King C, Dowell A, Moss P, Harper L, Chanouzas D, Ruan XZ, Salama AD. CD36 regulates macrophage and endothelial cell activation and multinucleate giant cell formation in anti neutrophil cytoplasm antibody vasculitis. Clin Immunol 2024; 260:109914. [PMID: 38286173 DOI: 10.1016/j.clim.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE To investigate CD36 in ANCA-associated vasculitis (AAV), a condition characterized by monocyte/macrophage activation and vascular damage. METHODS CD36 expression was assessed in AAV patients and healthy controls (HC). The impact of palmitic acid (PA) stimulation on multinucleate giant cell (MNGC) formation, macrophage, and endothelial cell activation, with or without CD36 knockdown, was examined. RESULTS CD36 was overexpressed on AAV patients' monocytes compared to HC, regardless of disease activity. AAV patients exhibited elevated soluble CD36 levels in serum and plasma and PR3-ANCA patients' monocytes demonstrated increased MNGC formation following PA stimulation compared to HC. PA stimulation of macrophages or endothelial cells resulted in heightened CD36 expression, cell activation, increased macrophage migration inhibitory factor (MIF) production, and c-Myc expression, with attenuation upon CD36 knockdown. CONCLUSION CD36 participates in macrophage and endothelial cell activation and MNGC formation, features of AAV pathogenesis. AAV treatment may involve targeting CD36 or MIF.
Collapse
Affiliation(s)
- Xiang Zhang
- UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK
| | - Catherine King
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Alexander Dowell
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Lorraine Harper
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Dimitrios Chanouzas
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences University of Birmingham, Birmingham, UK
| | - Xiong-Zhong Ruan
- UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK
| | - Alan David Salama
- UCL Centre for Kidney and Bladder Health, Royal Free Hospital, London, UK.
| |
Collapse
|
3
|
Lu J, Li Z, Lu M, Fan N, Zhang W, Li P, Tang Y, Yin X, Zhang W, Wang H, Tang B. Assessing Early Atherosclerosis by Detecting and Imaging of Hypochlorous Acid and Phosphorylation Using Fluorescence Nanoprobe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307008. [PMID: 37944535 DOI: 10.1002/adma.202307008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The assessment of early atherosclerosis (AS) is of great significance for the early diagnosis and mechanism research. Herein, a novel nanoprobe PCN@FL is developed to realize the simultaneous detection and imaging of phosphorylation and hypochlorous acid (HClO). The selective recognition of HClO is achieved through the specific interaction between DMTC and HClO, while the levels of phosphorylation are detected via the specific interaction between Zr (IV) and phosphates. The nanoprobe can be utilized to monitor the fluctuations in HClO and phosphate in early atherosclerosis. It is observed that the levels of HClO and phosphate in the serum of early AS mice are higher than those of the normal mice. Ultimately, the levels of hypochlorous acid and phosphorylation in the inner wall of aortic vessels are imaged by two-photon microscope. The results show that the levels of HClO and phosphorylation in the early atherosclerotic mice are significantly higher than those of in normal mice. The nanoprobe provides a suitable fluorescent tool for simultaneous detection and imaging of HClO and phosphorylation, which holds promise for early atherosclerotic disease assessment.
Collapse
Affiliation(s)
- Jun Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zongying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Mengmeng Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Nannan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yue Tang
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250014, P. R. China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
4
|
Frangie C, Daher J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed Rep 2022; 16:53. [PMID: 35620311 PMCID: PMC9112398 DOI: 10.3892/br.2022.1536] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Myeloperoxidase (MPO) belongs to the heme peroxidase family, which includes a set of enzymes with potent oxidoreductase activity. MPO is considered an important part of the innate immune system's microbicidal arm and is secreted by neutrophils and macrophages. Interestingly, this enzyme has been implicated in the pathogenesis of several diseases including atherosclerosis. MPO is ubiquitous in atherosclerotic lesions and contributes to the initiation and progression of the disease primarily by oxidizing low-density lipoprotein (LDL) particles. MPO is the only human enzyme with the ability to produce hypochlorous acid (HOCl) at physiological chloride concentrations and HOCl-LDL epitopes were shown to be present inside atheromatous lesions making it a physiologically relevant model for the oxidation of LDL. It has been shown that MPO modified LDL is not able to bind to the native LDL receptor and is recognized instead by scavenger receptors on both endothelial cells and macrophages, which can lead to endothelial dysfunction and foam cell formation, respectively; both of which are instrumental in the progression of the disease. Meanwhile, several studies have proposed MPO as a biomarker for cardiovascular diseases where high levels of this enzyme were linked to an increased risk of developing coronary artery disease. Overall, there is sufficient evidence supporting the value of MPO as a crucial player in health and disease. Thus, future research should be directed towards investigating the still unknown processes associated with this enzyme. This may assist in better understanding the pathophysiological role of MPO, as well in the development of therapeutic strategies for protecting against the deleterious effects of MPO in numerous pathologies such as atherosclerosis.
Collapse
Affiliation(s)
- Christian Frangie
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El‑Koura 100, Lebanon
| | - Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El‑Koura 100, Lebanon
| |
Collapse
|
5
|
Shchepetkina AA, Hock BD, Miller A, Kennedy MA, Gieseg SP. Effect of 7,8-dihydroneopterin mediated CD36 down regulation and oxidant scavenging on oxidised low-density lipoprotein induced cell death in human macrophages. Int J Biochem Cell Biol 2017; 87:27-33. [DOI: 10.1016/j.biocel.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022]
|
6
|
Orsó E, Matysik S, Grandl M, Liebisch G, Schmitz G. Human native, enzymatically modified and oxidized low density lipoproteins show different lipidomic pattern. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:299-306. [PMID: 25583048 DOI: 10.1016/j.bbalip.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/23/2014] [Accepted: 01/03/2015] [Indexed: 11/26/2022]
Abstract
In the present paper we have performed comparative lipidomic analysis of two prototypic atherogenic LDL modifications, oxidized LDL and enzymatically modified LDL. Oxidization of LDL was carried out with different chemical modifications starting from the same native LDL preparations: (i) by copper oxidation leading to terminally oxidized LDL (oxLDL), (ii) by moderate oxidization with HOCl (HOCl LDL), (iii) by long term storage of LDL at 4°C to produce minimally modified LDL (mmLDL), or (iv) by 15-lipoxygenase, produced by a transfected fibroblast cell line (LipoxLDL). The enzymatic modification of LDL was performed by treatment of native LDL with trypsin and cholesteryl esterase (eLDL). Free cholesterol (FC) and cholesteryl esters (CE) represent the predominant lipid classes in all LDL preparations. In contrast to native LDL, which contains about two-thirds of total cholesterol as CE, enzymatic modification of LDL decreased the proportion of CE to about one-third. Free cholesterol and CE in oxLDL are reduced by their conversion to oxysterols. Oxidization of LDL preferentially influences the content of polyunsaturated phosphatidylcholine (PC) and polyunsaturated plasmalogen species, by reducing the total PC fraction in oxLDL. Concomitantly, a strong rise of the lysophosphatidylcholine (LPC) fraction can be found in oxLDL as compared to native LDL. This effect is less pronounced in eLDL. The mild oxidation of LDL with hypochlorite and/or lipoxygenase does not alter the content of the analyzed lipid classes and species in a significant manner. The lipidomic characterization of modified LDLs contributes to the better understanding their diverse cellular effects.
Collapse
Affiliation(s)
- Evelyn Orsó
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Margot Grandl
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerd Schmitz
- University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
7
|
Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm 2013; 2013:971579. [PMID: 23983406 PMCID: PMC3742028 DOI: 10.1155/2013/971579] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023] Open
Abstract
Oxidation of low-density lipoprotein (LDL) has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO) is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis.
Collapse
|
8
|
Min KJ, Um HJ, Cho KH, Kwon TK. Curcumin inhibits oxLDL-induced CD36 expression and foam cell formation through the inhibition of p38 MAPK phosphorylation. Food Chem Toxicol 2013; 58:77-85. [PMID: 23603106 DOI: 10.1016/j.fct.2013.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/28/2022]
Abstract
The uptake of oxidized low density lipoprotein (oxLDL) via scavenger receptors transforms macrophages into foam cells, which are a hallmark of atherosclerosis. OxLDL markedly increases the expression of the CD36 scavenger receptor. Here, we investigated whether curcumin modulate CD36 expression in oxLDL-treated RAW 264.7 murine macrophages. Our results showed that curcumin dramatically inhibits CD36 expression and foam cell formation. Furthermore, oxLDL-induced expression and activity of peroxisome proliferator-activated receptor-gamma (PPAR-γ), which is involved in CD36 expression, is also blocked in curcumin-treated cells. OxLDL activates the mitogen-activated protein kinase (MAPK) signaling transduction pathway, and p38 MAPK is associated with oxLDL-induced CD36 and PPAR-γ expression. Overexpression of dominant negative p38 MAPK blocks oxLDL-induced CD36 and PPAR-γ expression. Furthermore, curcumin markedly inhibits p38 MAPK phosphorylation. Taken together, our results suggest that curcumin modulates oxLDL-induced CD36 expression and foam cell formation via the inhibition of p38 MAPK phosphorylation in RAW 264.7 murine macrophages.
Collapse
Affiliation(s)
- Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | | | | | | |
Collapse
|
9
|
Radhika A, Sudhakaran PR. Upregulation of macrophage-specific functions by oxidized LDL: lysosomal degradation-dependent and -independent pathways. Mol Cell Biochem 2012; 372:181-90. [PMID: 23054190 DOI: 10.1007/s11010-012-1459-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/14/2012] [Indexed: 02/02/2023]
Abstract
Formation of foam cells from macrophages, which are formed by the differentiation of blood-borne monocytes, is a critical early event in atherogenesis. To examine how pre-exposure of monocytes to modified proteins, such as oxLDL, influences their differentiation to macrophages, an in vitro model system using isolated PBMC maintained in culture in the presence of oxLDL was used. Pretreatment of monocytes with oxLDL caused a faster rate of expression of macrophage-specific functions and loss of monocyte-specific functions compared to unmodified LDL. The effect of oxidation of lipid component of LDL by CuSO(4) and its protein component by HOCl, on mo-mϕ differentiation was studied by monitoring the upregulation of macrophage-specific functions, particularly MMP-9. Chloroquine, a lysosomal degradation blocker, significantly reversed the effect mediated by CuSO(4) oxLDL, indicating the involvement of lysosomal degradation products, while no such effect was observed in HOCl oxLDL-treated cells, indicating the existence of a pathway independent of its lysosomal degradation products. Reversal of the effect of oxLDL by NAC and Calphostin C, an inhibitor of PKC, suggested the activation of RO-mediated signaling pathways. Use of inhibitors of signaling pathways showed that CuSO(4) oxLDL upregulated mϕ-specific MMP-9 through p38 MAPK and Akt-dependent pathways, while HOCl oxLDL utilized ERK ½ and Akt. Further analysis showed the activation of PPARγ and AP-1 in CuSO(4) oxLDL, while HOCl-oxLDL-mediated effect involved NFκB and AP-1. These results suggest that lipid oxLDL- and protein oxLDL-mediated upregulation of mo-mϕ-specific functions involve lysosomal degradation-dependent and -independent activation of intracellular signaling pathways.
Collapse
Affiliation(s)
- A Radhika
- Department of Biochemistry, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | | |
Collapse
|
10
|
Role of Peroxisome Proliferator-Activated Receptor-γ in Vascular Inflammation. Int J Vasc Med 2012; 2012:508416. [PMID: 22888436 PMCID: PMC3409528 DOI: 10.1155/2012/508416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
Vascular inflammation plays a crucial role in atherosclerosis, and its regulation is important to prevent cerebrovascular and coronary artery disease. The inflammatory process in atherogenesis involves a variety of immune cells including monocytes/macrophages, lymphocytes, dendritic cells, and neutrophils, which all express peroxisome proliferator-activated receptor-γ (PPAR-γ). PPAR-γ is a nuclear receptor and transcription factor in the steroid superfamily and is known to be a key regulator of adipocyte differentiation. Increasing evidence from mainly experimental studies has demonstrated that PPAR-γ activation by endogenous and synthetic ligands is involved in lipid metabolism and anti-inflammatory activity. In addition, recent clinical studies have shown a beneficial effect of thiazolidinediones, synthetic PPAR-γ ligands, on cardiovascular disease beyond glycemic control. These results suggest that PPAR-γ activation is an important regulator in vascular inflammation and is expected to be a therapeutic target in the treatment of atherosclerotic complications. This paper reviews the recent findings of PPAR-γ involvement in vascular inflammation and the therapeutic potential of regulating the immune system in atherosclerosis.
Collapse
|
11
|
Zhang Q, Zhang Y, Feng H, Guo R, Jin L, Wan R, Wang L, Chen C, Li S. High density lipoprotein (HDL) promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells. PLoS One 2011; 6:e23556. [PMID: 21886796 PMCID: PMC3158770 DOI: 10.1371/journal.pone.0023556] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3)H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.
Collapse
Affiliation(s)
- Qichun Zhang
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yun Zhang
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Haihua Feng
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rui Guo
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lai Jin
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rong Wan
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lina Wang
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Chen
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shengnan Li
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
12
|
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472:57-63. [PMID: 21475195 PMCID: PMC3086762 DOI: 10.1038/nature09922] [Citation(s) in RCA: 3979] [Impact Index Per Article: 284.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/09/2011] [Indexed: 02/06/2023]
Abstract
Metabolomics studies hold promise for discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. A metabolomics approach was used to generate unbiased small molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine, namely choline, trimethylamine N-oxide (TMAO), and betaine, were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted up-regulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases (FMOs), an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidemic mice. Discovery of a relationship between gut flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for development of both novel diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
Collapse
Affiliation(s)
- Zeneng Wang
- Department of Cell Biology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang N, Yin R, Liu Y, Mao G, Xi F. Role of Peroxisome Proliferator-Activated Receptor-.GAMMA. in Atherosclerosis - An Update -. Circ J 2011; 75:528-35. [DOI: 10.1253/circj.cj-11-0060] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Ruiying Yin
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Yan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Guangmei Mao
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| | - Fang Xi
- Institute of Cardiovascular Science, Peking University Health Science Center
- Key Laboratory of Molecular Cardiovascular Sciences at Peking University
| |
Collapse
|
14
|
Simpson-Haidaris PJ, Pollock SJ, Ramon S, Guo N, Woeller CF, Feldon SE, Phipps RP. Anticancer Role of PPARgamma Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes. PPAR Res 2010; 2010:814609. [PMID: 20204067 PMCID: PMC2829627 DOI: 10.1155/2010/814609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022] Open
Abstract
The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-gamma agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARgamma agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARgamma agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARgamma and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.
Collapse
Affiliation(s)
- P. J. Simpson-Haidaris
- Department of Medicine/Hem-Onc Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. J. Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. Ramon
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - N. Guo
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - C. F. Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. E. Feldon
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - R. P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- The Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
15
|
Yang J, Zhao SP, Li J, Dong SZ. Effect of niacin on adipocyte leptin in hypercholesterolemic rabbits. Cardiovasc Pathol 2008; 17:219-25. [PMID: 18402819 DOI: 10.1016/j.carpath.2007.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 08/28/2007] [Accepted: 09/19/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leptin may play an important role in the development of atherosclerosis. Several transcription genes [including peroxisome proliferator-activated receptor gamma (PPARgamma) and CD36] involved in lipid and glucose metabolism and inflammatory processes may correlate to leptin expression. The aim of this study was to investigate the effect of niacin on serum leptin levels in hypercholesterolemic rabbits and the expression of leptin, PPARgamma, and CD36 in adipocytes from hypercholesterolemic rabbits. METHODS Eighteen rabbits fed with high-cholesterol diet for 8 weeks were randomly divided into two groups: (a) high-cholesterol group (n=6), which is maintained on high-cholesterol diet for 6 weeks, and (b) niacin group (n=6), which receives the same cholesterol diet plus niacin (200 mg/kg/day) for 6 weeks. The control group (n=6) was fed with normal diet for 14 weeks. Subcutaneous adipose was collected for RNA analysis. The direct effect of niacin on leptin release was assayed in hypercholesterolemic rabbit adipocytes. Leptin levels in serum and adipocyte culture supernatant were measured via enzyme-linked immunosorbent assay. RT-PCR was used to evaluate leptin, PPARgamma, and CD36 mRNA expression in adipose and adipocytes. RESULTS Compared with the control group, rabbits fed with high-cholesterol diets showed higher levels of serum total cholesterol, low-density lipoprotein cholesterol, and leptin, all of which were significantly reduced by niacin treatment. After 6 weeks of treatment with niacin, the leptin level was significantly decreased by 21.8% (6.87+/-1.58 vs. 8.79+/-1.45, P<.05) and leptin mRNA expression of adipose was significantly lower in rabbits treated with niacin than in those fed with high-cholesterol diet continuously (0.58+/-0.11 vs. 0.73+/-0.15, P<.05). Niacin dose-dependently inhibited leptin secretion and increased CD36 and PPARgamma expression in cultured adipocytes. The reduction of leptin mRNA expression of hypercholesterolemic rabbits by niacin was negatively correlated with the up-regulation of PPARgamma and CD36 mRNA expression by niacin (r=-.69 and r=-.63, respectively, P<.01). CONCLUSION Niacin can reduce serum level and adipose mRNA expression of leptin and up-regulate PPARgamma and CD36 mRNA expression in hypercholesterolemic rabbits.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| | | | | | | |
Collapse
|
16
|
Radhika A, Jacob SS, Sudhakaran PR. Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Mol Cell Biochem 2007; 305:133-43. [PMID: 17660956 DOI: 10.1007/s11010-007-9536-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Transendothelial migration of peripheral blood mononuclear cells (PBMCs) and their subsequent interaction with the subendothelial matrix lead to their differentiation to macrophages (mphis). To study whether preexposure of monocytes in circulation to modified proteins influences their differentiation to mphis, an in vitro model system using isolated PBMC in culture was used. The effect of modified proteins such as oxidatively modified LDL (ox-LDL), acetylated and non-enzymatically glycated-BSA (NEG-BSA) on the differentiation process was studied by monitoring the upregulation of mphi specific functions such as endocytosis, production of matrix metalloproteinases (MMPs), expression of surface antigen, activity of beta-glucuronidase and down regulation of monocyte specific myeloperoxidase activity. Rate of endocytosis, production of MMPs and beta-glucuronidase activity were significantly greater in cells treated with modified proteins irrespective of the nature of modification. Both CuSO4 ox-LDL and HOCl ox-LDL increased the rate of expression of the mphi specific functions. FACS analysis showed that the rate of upregulation of mphi specific CD71 and down regulation of monocyte specific CD14 were high in cells supplemented with modified proteins. Studies using PPARgamma antagonist and agonist suggest its involvement in CuSO4 ox-LDL induced monocyte-macrophage (mo-mphi) differentiation whereas the expression of macrophage specific functions in cells exposed to other modified proteins was independent of PPARgamma. PBMC isolated from hypercholesterolemic rabbits in culture expressed mphi specific functions at a faster rate compared to normal controls indicating that these observations are relevant in vivo. These results indicate that preexposure of monocytes to modified proteins promote their differentiation to mphis and may serve as a feed forward type control for clearing modified proteins.
Collapse
Affiliation(s)
- Achuthan Radhika
- Department of Biochemistry, University of Kerala, Kariavattom, Trivandrum, 695 581, India
| | | | | |
Collapse
|
17
|
Graessler J, Pietzsch J, Westendorf T, Julius U, Bornstein SR, Kopprasch S. Glycoxidised LDL isolated from subjects with impaired glucose tolerance increases CD36 and peroxisome proliferator-activator receptor gamma gene expression in macrophages. Diabetologia 2007; 50:1080-8. [PMID: 17380316 DOI: 10.1007/s00125-007-0645-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/07/2007] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Glycoxidised LDL has been implicated in the pathogenesis of atherosclerosis, a major complication of diabetes. Since atherogenesis may occur at an early stage of diabetes, we investigated whether circulating LDL isolated from subjects with IGT (n = 20) showed an increased glycoxidation status and explored the proatherogenic effects of LDL samples on macrophages. SUBJECTS AND METHODS We investigated LDL modifications using GC-MS. Murine macrophages were incubated with LDL samples for 1 h, and then mRNA expression rates of the scavenger receptors CD36 and scavenger receptor class B type 1 (SCARB1, formerly known as SR-BI) and transcription factor peroxisome proliferator-activator receptor gamma (PPARgamma) were quantified by real-time RT-PCR. RESULTS The GC-MS experiments revealed that oxidative modifications of proline, arginine, lysine and tyrosine residues in apolipoprotein B100 were three- to fivefold higher in LDL samples from IGT subjects compared with those from NGT subjects (n = 20). Moreover, LDL glycoxidation estimated by both Nepsilon-(carboxymethyl)lysine (CML) and Nepsilon-(carboxyethyl)lysine (CEL) residues was increased more than ninefold in LDL from IGT subjects compared with samples from NGT subjects. Compared with NGT LDL, IGT LDL elicited a significantly higher CD36 (p < 0.05) and PPARG (p < 0.05) gene expression, whereas SCARB1 mRNA expression was not affected. CONCLUSIONS/INTERPRETATION These data suggest that IGT is associated with increased glycoxidation of circulating LDL, which might contribute to the conversion of macrophages into a proatherogenic phenotype.
Collapse
Affiliation(s)
- J Graessler
- Department of Internal Medicine, Division of Pathological Biochemistry, Carl Gustav Carus Medical School, University of Technology, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Koller E, Volf I, Gurvitz A, Koller F. Modified Low-Density Lipoproteins and High-Density Lipoproteins. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 35:322-45. [PMID: 16877881 DOI: 10.1159/000093225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has long been known that the oxidative state of the various plasma lipoproteins modulates platelet aggregability, thereby contributing to atherogenesis. Low-density lipoprotein (LDL), occurring in vivo both in the native and oxidised forms, interacts directly with platelets, by binding to specific receptors. While the identity of the receptors for native LDL and some subfractions of high-density lipoproteins (HDL) remains disputed, apoE-containing HDL(2) binds to LRP8. The nature of these interactions as well as the distinction between candidate receptor proteins was elucidated using covalently modified apolipoproteins, which pointed to the participation of apolipoproteins in high affinity binding. However, the platelet effects initiated by binding of native lipoproteins remain controversial. Some of this ambiguity can be traced to the fact that native LDL inevitably undergoes substantial oxidisation upon modification, including by radiolabelling. The platelet-activating effects provoked by oxidised LDL are irrefutable, but many details remain unknown. The role of CD36 in platelet binding by oxidised LDL is well established, although additional receptors may exist. Much less is known about the interaction of oxidised HDL with platelets, since platelet activation was observed in some, but not all studies. Various frequently applied in vitro oxidation methods produce modified lipoprotein species that may not be relevant in vivo. Based on the reported modifications obtained by in vitro oxidation of LDL, early investigations focused mainly on the formation and the eventual effects of oxidised lipids. More recently, alterations to lipoproteins performed using hypochloric acid and myeloperoxidase redirected the attention to the role of modified apoproteins in triggering platelet responses.
Collapse
Affiliation(s)
- Elisabeth Koller
- Department of Physiology, Center of Physiology and Pathophysiology, Medical University of Vienna, Austria.
| | | | | | | |
Collapse
|
19
|
Malle E, Marsche G, Arnhold J, Davies MJ. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:392-415. [PMID: 16698314 DOI: 10.1016/j.bbalip.2006.03.024] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
Substantial evidence supports the notion that oxidative processes contribute to the pathogenesis of atherosclerosis and coronary heart disease. The nature of the oxidants that give rise to the elevated levels of oxidised lipids and proteins, and decreased levels of antioxidants, detected in human atherosclerotic lesions are, however, unclear, with multiple species having been invoked. Over the last few years, considerable data have been obtained in support of the hypothesis that oxidants generated by the heme enzyme myeloperoxidase play a key role in oxidation reactions in the artery wall. In this article, the evidence for a role of myeloperoxidase, and oxidants generated therefrom, in the modification of low-density lipoprotein, the major source of lipids in atherosclerotic lesions, is reviewed. Particular emphasis is placed on the reactions of the reactive species generated by this enzyme, the mechanisms and sites of damage, the role of modification of the different components of low-density lipoprotein, and the biological consequences of such oxidation on cell types present in the artery wall and in the circulation, respectively.
Collapse
Affiliation(s)
- Ernst Malle
- Medical University Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|