1
|
Guo H, Ruan C, Zhan X, Pan H, Luo Y, Gao K. Crocetin Protected Human Hepatocyte LO2 Cell From TGF-β-Induced Oxygen Stress and Apoptosis but Promoted Proliferation and Autophagy via AMPK/m-TOR Pathway. Front Public Health 2022; 10:909125. [PMID: 35836988 PMCID: PMC9273739 DOI: 10.3389/fpubh.2022.909125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the protective effects of crocetin against transforming growth factor-β (TGF-β)—induced injury in LO2 cells. Methods Human hepatocyte LO2 cells were pre-treated with crocetin (10 μM) for 6, 12, and 24 h, and then induced by TGF-β. Proliferation, oxidative stress, apoptosis, autophagy, and related proteins were assessed. Results Crocetin pre-treating promoted proliferation but suppressed apoptosis in TGF-β-induced LO2 cells. Crocetin protected LO2 cells from TGF-β-induced inflammation and oxygen stress by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) but enhancing superoxide dismutase (SOD) and glutathione (GSH). Autophagy was suppressed in TGF-β but crocetin promoted autophagy in LO2 cells by mediating Adenosine 5'-monophosphate—activated protein kinase (AMPK)/mammalian target of rapamycin (m-TOR) signaling pathway via upregulating p-AMPK and p-Beclin-1 but downregulating p-mTOR. Conclusions Crocetin protected LO2 cells from TGF-β-induced damage by promoting proliferation and autophagy, and suppressing apoptosis and anti-inflammation via regulation of AMPK/m-TOR signaling pathway.
Collapse
Affiliation(s)
- Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chenyu Ruan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhong Zhan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hao Pan
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yumei Luo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ke Gao
- Department of Pathology, Foshan Fosun Chancheng Hospital, Foshan, China
- *Correspondence: Ke Gao
| |
Collapse
|
2
|
Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103867] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
3
|
Hashemi M, Hosseinzadeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019; 130:44-60. [PMID: 31100302 DOI: 10.1016/j.fct.2019.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Natural products with high pharmacological potential and low toxicity have been considered as the novel therapeutic agents. Crocetin is an active constituent of saffron (Crocus sativus L.) stigma, which in its free-acid form is insoluble in water and most organic solvents. Crocetin exhibits various health-promoting properties including anti-tumor, neuroprotective effects, anti-diabetics, anti-inflammatory, anti-hyperlipidemia, etc. These therapeutic effects can be achieved with different mechanisms such as improvement of oxygenation in hypoxic tissues, antioxidant effects, inhibition of pro-inflammatory mediators, anti-proliferative activity and stimulation of apoptosis in cancer cells. It is also worth considering that crocetin could be tolerated without major toxicity at therapeutic dosage in experimental models. In the present review, we discuss the biosynthesis, pharmacokinetic properties of crocetin and provide a comprehensive study on the biological activities and toxicity along with the mechanism of actions and clinical trials data of crocetin.
Collapse
Affiliation(s)
- Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Yang L, Dong X. Inhibition of Inflammatory Response by Crocin Attenuates Hemorrhagic Shock-Induced Organ Damages in Rats. J Interferon Cytokine Res 2017; 37:295-302. [PMID: 28453369 DOI: 10.1089/jir.2016.0137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hemorrhagic shock (HS) is associated with an excessive activation of inflammation, contributing to multiple organ failure in numerous medical or surgical conditions. To explore the therapeutic potential of crocin, a natural compound with anti-inflammatory properties, we administered crocin to rats during resuscitation following HS induced by withdrawing blood. Compared with control animals which were sham-treated, HS-operated rats showed organ damages as manifested by enhanced markers of multiple organ dysfunctions. Crocin treatment substantially reduced these parameters in rats subjected to HS, suggesting an alleviation of tissue injuries such as in the kidney, liver, pancreas, and muscle. The activation of NF-κB (nuclear factor κB) pathway in lung tissue by HS, as shown by increased nuclear translocation of p65 and IκBα phosphorylation, was diminished by crocin treatment. The crocin administration also significantly decreased the serum levels of proinflammatory cytokine TNF-α (tumor necrosis factor-α) and interleukin (IL)-6, whereas increased the level of anti-inflammatory cytokine IL-10 in HS-operated rats. These studies indicate that crocin administration may reduce inflammation-driven tissue damage in patients with HS.
Collapse
Affiliation(s)
- Long Yang
- 1 Department of Emergency, Cangzhou City Central Hospital Brain Campus , Cangzhou, China
| | - Xiujuan Dong
- 2 Department of Obstetrics, Cangzhou City Central Hospital , Cangzhou, China
| |
Collapse
|
5
|
Kuncewitch M, Yang WL, Jacob A, Khader A, Giangola M, Nicastro J, Coppa GF, Wang P. Inhibition of fatty acid synthase with C75 decreases organ injury after hemorrhagic shock. Surgery 2015; 159:570-9. [PMID: 26372196 DOI: 10.1016/j.surg.2015.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Hemorrhagic shock is the primary cause of morbidity and mortality in the intensive care units in patients under the age of 35. Several organs, including the lungs, are seriously affected by hemorrhagic shock and inadequate resuscitation. Excess free fatty acids have shown to trigger inflammation in various disease conditions. C75 is a small compound that inhibits fatty acid synthase, a key enzyme in the control of fatty acid metabolism that also stimulates fatty acid oxidation. We hypothesized that C75 treatment would be protective against hemorrhagic shock. METHODS Adult male Sprague-Dawley rats were cannulated with a femoral artery catheter and subjected to controlled bleeding. Blood was shed to maintain a mean arterial pressure of 30 mm Hg for 90 minutes, then resuscitated over 30 minutes with a crystalloid volume equal to twice the volume of shed blood. Fifteen minutes into the 30-minute resuscitation, the rats received either intravenous infusion of C75 (1 mg/kg body weight) or vehicle (20% dimethyl sulfoxide). Blood and tissue samples were collected 6 hours after resuscitation (ie, 7.5 hours after hemorrhage) for analysis. RESULTS After hemorrhage and resuscitation, C75 treatment decreased the increase in serum free fatty acids by 48%, restored adenosine triphosphate levels, and stimulated carnitine palmitoyl transferase-1 activity. Administration of C75 decreased serum levels of markers of injury (aspartate aminotransferase, lactate, and lactate dehydrogenase) by 38%, 32%, and 78%, respectively. Serum creatinine and blood urea nitrogen were also decreased significantly by 38% and 40%, respectively. These changes correlated with decreases in neutrophil infiltration in the lung, evidenced by decreases in Gr-1-stained cells and myeloperoxidase activity and improved lung histology. Finally, administration of C75 decreased pulmonary mRNA levels of cyclooxygenase-2 and interleukin-6 by 87% and 65%, respectively. CONCLUSION Administration of C75 after hemorrhage and resuscitation decreased the increase in serum free fatty acids, decreased markers of tissue injury, downregulated the expression of inflammatory mediators, and decreased neutrophil infiltration and lung injury. Thus, the dual action of inhibiting fatty acid synthesis and stimulating fatty acid oxidation by C75 could be developed as a promising adjuvant therapy strategy to protect against hemorrhagic shock.
Collapse
Affiliation(s)
- Michael Kuncewitch
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Weng Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Asha Jacob
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Adam Khader
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Matthew Giangola
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Jeff Nicastro
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Gene F Coppa
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY.
| |
Collapse
|
6
|
Li CY, Huang WF, Wang QL, Wang F, Cai E, Hu B, Du JC, Wang J, Chen R, Cai XJ, Feng J, Li HH. Crocetin induces cytotoxicity in colon cancer cells via p53-independent mechanisms. Asian Pac J Cancer Prev 2013; 13:3757-61. [PMID: 23098467 DOI: 10.7314/apjcp.2012.13.8.3757] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Crocin has been proposed as a promising candidate for cancer chemoprevention. The purpose of this investigation was to investigate the chemopreventive action and the possible mechanisms of crocin against human colon cancer cells in vitro. METHODS Cell proliferation was examined using MTT assay and the cell cycle distribution fractions were analyzed using flow cytometric analysis after propidium iodide staining. Apoptosis was detected using the TUNEL Apoptosis Detection Kit with laser scanning confocal microscope. DNA damage was assessed using the alkaline single-cell gel electrophoresis assay, while expression levels of p53, cdk2, cyclin A and P21 were examined by Western blot analysis. RESULTS Treatment of SW480 cells with crocetin (0.2, 0.4, 0.8 mmol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner. Crocetin (0.8 mmol/L) significantly induced cell cycle arrest through p53-independent mechanisms accompanied by P21 induction. Crocetin (0.8 mmol/L) caused cytotoxicity in the SW480 cells by enhancing apoptosis and decreasing DNA repair capacity in a time-dependent manner. CONCLUSIONS This report provides evidence that crocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Cai-Yan Li
- Clinical Laboratory Medicine Center, The Second People's Hospital of Jingmen, Jingmen, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Resuscitation after hemorrhagic shock: the effect on the liver--a review of experimental data. J Anesth 2012; 27:447-60. [PMID: 23275009 DOI: 10.1007/s00540-012-1543-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 12/30/2022]
Abstract
The liver is currently considered to be one of the first organs to be subjected to the hypoxic insult inflicted by hemorrhagic shock. The oxidative injury caused by resuscitation also targets the liver and can lead to malfunction and the eventual failure of this organ. Each of the various fluids, vasoactive drugs, and pharmacologic substances used for resuscitation has its own distinct effect(s) on the liver, and the anesthetic agents used during surgical resuscitation also have an impact on hepatocytes. The aim of our study was to identify the specific effect of these substances on the liver. To this end, we conducted a literature search of MEDLINE for all types of articles published in English, with a focus on articles published in the last 12 years. Our search terms were "hemorrhagic shock," "liver," "resuscitation," "vasopressors," and "anesthesia." Experimental studies form the majority of articles found in bibliographic databases. The effect of a specific resuscitation agent on the liver is assessed mainly by measuring apoptotic pathway regulators and inflammation-induced indicators. Apart from a wide range of pharmacological substances, modifications of Ringer's Lactate, colloids, and pyruvate provide protection to the liver after hemorrhage and resuscitation. In this setting, it is of paramount importance that the treating physician recognize those agents that may attenuate liver injury and avoid using those which inflict additional damage.
Collapse
|
8
|
Ringer's malate solution protects against the multiple organ injury and dysfunction caused by hemorrhagic shock in rats. Shock 2012; 38:268-74. [PMID: 22777115 DOI: 10.1097/shk.0b013e318264e664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Malic acid, in the form of its anion malate, is a key intermediate in the major biochemical energy-producing cycle known as the citric acid or Krebs cycle. In this study, the authors investigated the protective effect of a novel crystalloid solution of Ringer's malate following fluid resuscitation of hemorrhagic shock using a rat model. Under general anesthesia, Sprague-Dawley male rats were subjected to 60 min of hemorrhagic shock (40 mmHg for 60 min) followed by crystalloid resuscitation. Groups were as follows: (1) sham shock, (2) normal saline, (3) Ringer's lactate, and (4) Ringer's malate. The experiment was terminated at 4 h after resuscitation. Mean arterial blood pressure (MAP) and blood biophysical parameters were monitored during the experiment. The alanine aminotransferase, aspartate aminotransferase, urea, creatinine, superoxide dismutase, and malondialdehyde levels in plasma were detected. The intestine, liver, lung, and renal histopathology were measured. It was found that Ringer's malate could increase MAP immediately and maintain MAP for a long time. Ringer's malate could reduce the level of alanine aminotransferase, aspartate aminotransferase, urea, and creatinine. At the same time, the activity of superoxide dismutase was increased, and the level of malondialdehyde was decreased. Histopathology indicated that Ringer's malate can protect against the multiple organ injury caused by hemorrhagic shock in rats. Ringer's malate prevented circulatory failure and alleviated multiple organ dysfunction syndrome in animals with hemorrhagic shock. The study suggests that Ringer's malate solution could be a potential novel therapeutic agent for fluid resuscitation.
Collapse
|
9
|
Gutheil WG, Reed G, Ray A, Anant S, Dhar A. Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 2012; 13:173-9. [PMID: 21466430 DOI: 10.2174/138920112798868566] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/22/2022]
Abstract
Cancer is one of the leading causes of death in the United States and accounts for approximately 8 million deaths per year worldwide. Although there is an increasing number of therapeutic options available for patients with cancer, their efficacy is time-limited and non-curative. Approximately 50-60% cancer patients in the United States utilize agents derived from different parts of plants or nutrients (complementary and alternative medicine), exclusively or concurrently with traditional therapeutic regime such as chemotherapy and/or radiation therapy. The need for new drugs has prompted studies evaluating possible anti-cancer agents in fruits, vegetables, herbs and spices. Saffron, a spice and a food colorant present in the dry stigmas of the plant Crocus sativus L., has been used as an herbal remedy for various ailments including cancer by the ancient Arabian, Indian and Chinese cultures. Crocetin, an important carotenoid constituent of saffron, has shown significant potential as an anti-tumor agent in animal models and cell culture systems. Crocetin affects the growth of cancer cells by inhibiting nucleic acid synthesis, enhancing anti-oxidative system, inducing apoptosis and hindering growth factor signaling pathways. This review discusses the studies on cancer preventive potential of crocetin and its future use as an anticancer agent.
Collapse
Affiliation(s)
- William G Gutheil
- Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO, USA
| | | | | | | | | |
Collapse
|
10
|
Zhong YJ, Shi F, Zheng XL, Wang Q, Yang L, Sun H, He F, Zhang L, Lin Y, Qin Y, Liao LC, Wang X. Crocetin induces cytotoxicity and enhances vincristine-induced cancer cell death via p53-dependent and -independent mechanisms. Acta Pharmacol Sin 2011; 32:1529-36. [PMID: 21986580 DOI: 10.1038/aps.2011.109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM To investigate the anticancer effect of crocetin, a major ingredient in saffron, and its underlying mechanisms. METHODS Cervical cancer cell line HeLa, non-small cell lung cancer cell line A549 and ovarian cancer cell line SKOV3 were treated with crocetin alone or in combination with vincristine. Cell proliferation was examined using MTT assay. Cell cycle distribution and sub-G(1) fraction were analyzed using flow cytometric analysis after propidium iodide staining. Apoptosis was detected using the Annexin V-FITC Apoptosis Detection Kit with flow cytometry. Cell death was measured based on the release of lactate dehydrogenase (LDH). The expression levels of p53 and p21(WAF1/Cip1) as well as caspase activation were examined using Western blot analysis. RESULTS Treatment of the 3 types of cancer cells with crocetin (60-240 μmol/L) for 48 h significantly inhibited their proliferation in a concentration-dependent manner. Crocetin (240 μmol/L) significantly induced cell cycle arrest through p53-dependent and -independent mechanisms accompanied with p21(WAF1/Cip1) induction. Crocetin (120-240 μmol/L) caused cytotoxicity in the 3 types of cancer cells by enhancing apoptosis in a time-dependent manner. In the 3 types of cancer cells, crocetin (60 μmol/L) significantly enhanced the cytotoxicity induced by vincristine (1 μmol/L). Furthermore, this synergistic effect was also detected in the vincristine-resistant breast cancer cell line MCF-7/VCR. CONCLUSION Ccrocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug or as a chemosensitizer for vincristine.
Collapse
|
11
|
Klemcke HG, Joe B, Rose R, Ryan KL. Life or death? A physiogenomic approach to understand individual variation in responses to hemorrhagic shock. Curr Genomics 2011; 12:428-42. [PMID: 22379396 PMCID: PMC3178911 DOI: 10.2174/138920211797248574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022] Open
Abstract
Severe hemorrhage due to trauma is a major cause of death throughout the world. It has often been observed that some victims are able to withstand hemorrhage better than others. For decades investigators have attempted to identify physiological mechanisms that distinguish survivors from nonsurvivors for the purpose of providing more informed therapies. As an alternative approach to address this issue, we have initiated a research program to identify genes and genetic mechanisms that contribute to this phenotype of survival time after controlled hemorrhage. From physiogenomic studies using inbred rat strains, we have demonstrated that this phenotype is a heritable quantitative trait, and is therefore a complex trait regulated by multiple genes. Our work continues to identify quantitative trait loci as well as potential epigenetic mechanisms that might influence survival time after severe hemorrhage. Our ultimate goal is to improve survival to traumatic hemorrhage and attendant shock via regulation of genetic mechanisms and to provide knowledge that will lead to genetically-informed personalized treatments.
Collapse
Affiliation(s)
- Harold G Klemcke
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Rajiv Rose
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Kathy L Ryan
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
12
|
Ulbricht C, Conquer J, Costa D, Hollands W, Iannuzzi C, Isaac R, Jordan JK, Ledesma N, Ostroff C, Serrano JMG, Shaffer MD, Varghese M. An Evidence-Based Systematic Review of Saffron (Crocus sativus) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:58-114. [DOI: 10.3109/19390211.2011.547666] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Bathaie SZ, Mousavi SZ. New Applications and Mechanisms of Action of Saffron and its Important Ingredients. Crit Rev Food Sci Nutr 2010; 50:761-86. [DOI: 10.1080/10408390902773003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, Campbell DR, Banerjee SK. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther 2009; 8:315-23. [PMID: 19208826 DOI: 10.1158/1535-7163.mct-08-0762] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crocetin, a carotenoid compound derived from saffron, has long been used as a traditional ancient medicine against different human diseases including cancer. The aim of the series of experiments was to systematically determine whether crocetin significantly affects pancreatic cancer growth both in vitro and/or in vivo. For the in vitro studies, first, MIA-PaCa-2 cells were treated with crocetin and in these sets of experiments, a proliferation assay using H(3)-thymidine incorporation and flow cytometric analysis suggested that crocetin inhibited proliferation. Next, cell cycle proteins were investigated. Cdc-2, Cdc-25C, Cyclin-B1, and epidermal growth factor receptor were altered significantly by crocetin. To further confirm the findings of inhibition of proliferation, H(3)-thymidine incorporation in BxPC-3, Capan-1, and ASPC-1 pancreatic cancer cells was also significantly inhibited by crocetin treatment. For the in vivo studies, MIA-PaCa-2 as highly aggressive cells than other pancreatic cancer cells used in this study were injected into the right hind leg of the athymic nude mice and crocetin was given orally after the development of a palpable tumor. The in vivo results showed significant regression in tumor growth with inhibition of proliferation as determined by proliferating cell nuclear antigen and epidermal growth factor receptor expression in the crocetin-treated animals compared with the controls. Both the in vitro pancreatic cancer cells and in vivo athymic nude mice tumor, apoptosis was significantly stimulated as indicated by Bax/Bcl-2 ratio. This study indicates that crocetin has a significant antitumorigenic effect in both in vitro and in vivo on pancreatic cancer.
Collapse
Affiliation(s)
- Animesh Dhar
- Hematology and Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tsai MC, Chen WJ, Ching CH, Chuang JI. RESUSCITATION WITH HYDROXYETHYL STARCH SOLUTION PREVENTS NUCLEAR FACTOR κB ACTIVATION AND OXIDATIVE STRESS AFTER HEMORRHAGIC SHOCK AND RESUSCITATION IN RATS. Shock 2007; 27:527-33. [PMID: 17438458 DOI: 10.1097/01.shk.0000245032.31859.f2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fluid resuscitation is vital for treating traumatic hemorrhagic shock (HS), but reperfusion is believed to have the adverse consequences of generating reactive oxygen species and inflammatory cytokines, both of which cause multiple organ dysfunctions. We investigated the effects of various resuscitation fluids on the changes of redox-sensitive molecules after HS and fluid resuscitation (HS/R). We induced HS by bleeding male Sprague-Dawley rats to a blood pressure of 30 to 40 mmHg for 60 minutes. Thirty minutes later, the rats were killed (HS group) or immediately resuscitated with shed blood (HS + BL group), L-isomer lactated Ringer's solution (HS + LR group), or hydroxyethyl starch (HS + HES group). After HS, we found a significant increase in nuclear factor kappaB DNA binding activity, which was effectively inhibited using HES solution or blood resuscitation. Moreover, resuscitation with blood or LR solution, but not HES solution, induced significant oxidative stress, manifested by a high ratio of oxidized glutathione to reduced glutathione in the lungs, liver, and spleen. HS alone, however, did not increase the ratio of the oxidized glutathione to reduced glutathione in all organs. Although the protein expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax varied in different organs, we found that resuscitation using HES solution prevented the HS-induced reduction of the Bcl-2/Bax ratio in the heart. HES solution was an appropriate resuscitation fluid in reversing nuclear factor kappaB activation, maintaining the Bcl-2/Bax ratio, and preventing oxidative stress after acute HS.
Collapse
Affiliation(s)
- Ming-Che Tsai
- Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | | | |
Collapse
|