1
|
Xin Y, Malick A, Hu M, Liu C, Batah H, Xu H, Duan C. Cell-autonomous regulation of epithelial cell quiescence by calcium channel Trpv6. eLife 2019; 8:48003. [PMID: 31526479 PMCID: PMC6764821 DOI: 10.7554/elife.48003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial homeostasis and regeneration require a pool of quiescent cells. How the quiescent cells are established and maintained is poorly understood. Here, we report that Trpv6, a cation channel responsible for epithelial Ca2+ absorption, functions as a key regulator of cellular quiescence. Genetic deletion and pharmacological blockade of Trpv6 promoted zebrafish epithelial cells to exit from quiescence and re-enter the cell cycle. Reintroducing Trpv6, but not its channel dead mutant, restored the quiescent state. Ca2+ imaging showed that Trpv6 is constitutively open in vivo. Mechanistically, Trpv6-mediated Ca2+ influx maintained the quiescent state by suppressing insulin-like growth factor (IGF)-mediated Akt-Tor and Erk signaling. In zebrafish epithelia and human colon carcinoma cells, Trpv6/TRPV6 elevated intracellular Ca2+ levels and activated PP2A, which down-regulated IGF signaling and promoted the quiescent state. Our findings suggest that Trpv6 mediates constitutive Ca2+ influx into epithelial cells to continuously suppress growth factor signaling and maintain the quiescent state.
Collapse
Affiliation(s)
- Yi Xin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Allison Malick
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Meiqin Hu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Chengdong Liu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Heya Batah
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Haoxing Xu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
2
|
Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 2013; 335:9-18. [PMID: 23454242 DOI: 10.1016/j.canlet.2013.02.036] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 12/28/2022]
Abstract
Protein Phosphatase 2A (PP2A) is an important and ubiquitously expressed serine threonine phosphatase and regulates the function by dephosphorylating many critical cellular molecules like Akt, p53, c-Myc and β-catenin. It plays a critical role in cellular processes, such as cell proliferation, signal transduction and apoptosis. Structurally, it is multifarious as it is composed of catalytic, scaffold and regulatory subunits. The catalytic and scaffold subunits have two isoforms and the regulatory subunit has four different families containing different isoforms. The regulatory subunit is the most diverse with temporal and spatial specificity. PP2A undergoes post-translational modifications (i.e. phosphorylation and methylation), which in turn, regulates its enzymatic activity. Aberrant expression, mutations and somatic alterations of the PP2A scaffold and regulatory subunits have been observed in various human malignancies, including lung, breast, skin and colon cancer, highlighting its role as a 'tumor suppressor'. This review is focused on the structural complexity of serine/threonine phosphatase PP2A and summarizes its expression pattern in cancer. Additionally, the PP2A interacting and regulatory proteins and substrates are also discussed. Finally, the mouse models developed to understand the biological role of PP2A subunits in an in vivo model system are also reviewed in this article.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | | | | | |
Collapse
|
3
|
Liu L, Chen L, Luo Y, Chen W, Zhou H, Xu B, Han X, Shen T, Huang S. Rapamycin inhibits IGF-1 stimulated cell motility through PP2A pathway. PLoS One 2010; 5:e10578. [PMID: 20485667 PMCID: PMC2868031 DOI: 10.1371/journal.pone.0010578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/20/2010] [Indexed: 01/11/2023] Open
Abstract
Serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) has been implicated as a novel component of the mammalian target of rapamycin (mTOR) signaling pathway. Recently we have demonstrated that mTOR regulates cell motility in part through p70 S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) pathways. Little is known about the role of PP2A in the mTOR-mediated cell motility. Here we show that rapamycin inhibited the basal or insulin-like growth factor 1 (IGF-1)-induced motility of human Ewing sarcoma (Rh1) and rhabdomyosarcoma (Rh30) cells. Treatment of the cells with rapamycin activated PP2A activity, and concurrently inhibited IGF-1 stimulated phosphorylation of Erk1/2. Inhibition of Erk1/2 with PD98059 did not significantly affect the basal mobility of the cells, but dramatically inhibited IGF-1-induced cell motility. Furthermore, inhibition of PP2A with okadaic acid significantly attenuated the inhibitory effect of rapamycin on IGF-1-stimulated phosphorylation of Erk1/2 as well as cell motility. Consistently, expression of dominant negative PP2A conferred resistance to IGF-1-stimulated phosphorylation of Erk1/2 and cell motility. Expression of constitutively active MKK1 also attenuated rapamycin inhibition of IGF-1-stimulated phosphorylation of Erk1/2 and cell motility. The results suggest that rapamycin inhibits cell motility, in part by targeting PP2A-Erk1/2 pathway.
Collapse
Affiliation(s)
- Lei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Long Chen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Wenxing Chen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Baoshan Xu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Xiuzhen Han
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Tao Shen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
4
|
Nakakuki T, Yumoto N, Naka T, Shirouzu M, Yokoyama S, Hatakeyama M. Topological analysis of MAPK cascade for kinetic ErbB signaling. PLoS One 2008; 3:e1782. [PMID: 18335053 PMCID: PMC2262155 DOI: 10.1371/journal.pone.0001782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 02/08/2008] [Indexed: 11/18/2022] Open
Abstract
Ligand-induced homo- and hetero-dimer formation of ErbB receptors results in different biological outcomes irrespective of recruitment and activation of similar effector proteins. Earlier experimental research indicated that cells expressing both EGFR (epidermal growth factor receptor) and the ErbB4 receptor (E1/4 cells) induced E1/4 cell-specific B-Raf activation and higher extracellular signal-regulated kinase (ERK) activation, followed by cellular transformation, than cells solely expressing EGFR (E1 cells) in Chinese hamster ovary (CHO) cells. Since our experimental data revealed the presence of positive feedback by ERK on upstream pathways, it was estimated that the cross-talk/feedback pathway structure of the Raf-MEK-ERK cascade might affect ERK activation dynamics in our cell system. To uncover the regulatory mechanism concerning the ERK dynamics, we used topological models and performed parameter estimation for all candidate structures that possessed ERK-mediated positive feedback regulation of Raf. The structure that reliably reproduced a series of experimental data regarding signal amplitude and duration of the signaling molecules was selected as a solution. We found that the pathway structure is characterized by ERK-mediated positive feedback regulation of B-Raf and B-Raf-mediated negative regulation of Raf-1. Steady-state analysis of the estimated structure indicated that the amplitude of Ras activity might critically affect ERK activity through ERK-B-Raf positive feedback coordination with sustained B-Raf activation in E1/4 cells. However, Rap1 that positively regulates B-Raf activity might be less effective concerning ERK and B-Raf activity. Furthermore, we investigated how such Ras activity in E1/4 cells can be regulated by EGFR/ErbB4 heterodimer-mediated signaling. From a sensitivity analysis of the detailed upstream model for Ras activation, we concluded that Ras activation dynamics is dominated by heterodimer-mediated signaling coordination with a large initial speed of dimerization when the concentration of the ErbB4 receptor is considerably high. Such characteristics of the signaling cause the preferential binding of the Grb2-SOS complex to heterodimer-mediated signaling molecules.
Collapse
Affiliation(s)
- Takashi Nakakuki
- Cellular Systems Biology Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Noriko Yumoto
- Cellular Systems Biology Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takashi Naka
- Department of Intelligent Informatics, Faculty of Information Science, Kyushu Sangyo University, Higashi-ku, Fukuoka, Japan
| | - Mikako Shirouzu
- Protein Research Group, RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Shigeyuki Yokoyama
- Protein Research Group, RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mariko Hatakeyama
- Cellular Systems Biology Team, Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
5
|
Lee WJ, Kim DU, Lee MY, Choi KY. Identification of proteins interacting with the catalytic subunit of PP2A by proteomics. Proteomics 2007; 7:206-14. [PMID: 17163575 DOI: 10.1002/pmic.200600480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of multiple signaling pathways including the Wnt/beta-catenin and the ERK pathways. To understand the complex signaling networking associated with PP2A, we searched proteins interacting with the catalytic subunit of protein phosphatase 2A (PP2Ac) by a pull-down analysis followed by 2-D gel electrophoresis and proteomic analyses. The probability of identification of the proteins interacting with PP2Ac was increased by searching proteins differently interacting with PP2Ac according to stimulation of Wnt3a, which regulates both the Wnt/beta-catenin and the ERK pathways. Around 100 proteins, pulled-down by His-tagged PP2Ac, were identified in 2-D gels stained with CBB. By MALDI-TOF-MS analyses of 45 protein spots, we identified several proteins that were previously known to interact with PP2A, such as Axin and CaMK IV. In addition, we also identified many proteins that potentially interact with PP2Ac. The interactions of several candidate proteins, such as tuberous sclerosis complex 2, RhoB, R-Ras, and Nm23H2, with PP2Ac, were confirmed by in vitro binding analyses and/or coimmunoprecipitation experiments.
Collapse
Affiliation(s)
- Won-Jeong Lee
- National Laboratory of Molecular Complex Control, Department of Biotechnology, College of Engineering and Protein Network Research Center, Yonsei University, Seoul, Korea
| | | | | | | |
Collapse
|
6
|
Yasmeen A, Bismar TA, Al Moustafa AE. ErbB receptors and epithelial-cadherin-catenin complex in human carcinomas. Future Oncol 2007; 2:765-81. [PMID: 17155902 DOI: 10.2217/14796694.2.6.765] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ErbB family of receptor tyrosine kinases have important roles in maintaining normal epithelial cell function. The ErbBs are involved in the interaction between cells and cell-matrix adhesion molecules and have proven critical in maintaining the integrity of the epithelial cell environment. Deregulation of these tyrosine receptors has been associated with several human diseases. In particular, the expression or activation of epidermal growth factor receptor (EGFR) and ErbB2 is altered in many epithelial tumors. Epithelial (E)-cadherin is another major molecule expressed by epithelial cells. To create efficient cell-cell adhesion, E-cadherin couples its cytoplasmic domain to catenins and the actin cytoskeleton. The loss of intercellular adhesion appears to be a fundamental aspect of the neoplastic phenomena. In addition, EGFR and ErbB2 signaling associated with the E-cadherin-catenin complex has been demonstrated in normal and cancer cells. This signaling is involved in regulating cell adhesion and the invasive growth of cancers. This article provides an overview of the interaction between the ErbB tyrosine receptors and the E-cadherin-catenin complex in human carcinomas.
Collapse
Affiliation(s)
- Amber Yasmeen
- McGill University, Program in Cancer Genetics, Department of Oncology, Montreal, Quebec, Canada.
| | | | | |
Collapse
|