1
|
Szczuko M, Pokorska-Niewiada K, Kwiatkowska L, Nawrocka-Rutkowska J, Szydłowska I, Ziętek M. Level of Potassium Is Associated with Saturated Fatty Acids in Cell Membranes and Influences the Activation of the 9 and 13 HODE and 5 HETE Synthesis Pathways in PCOS. Biomedicines 2022; 10:biomedicines10092244. [PMID: 36140345 PMCID: PMC9496543 DOI: 10.3390/biomedicines10092244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Potassium helps to maintain the water–electrolyte and acid–base balance. There is little research on the relationship between plasma fatty acids (FAs), inflammatory mediators and red blood cell potassium levels in women with polycystic ovary syndrome (PCOS). This study included 38 Caucasian women with PCOS. Potassium in the erythrocytes was determined by inductively coupled atomic plasma emission spectrometry. The FAs were analysed with gas chromatography, and liquid chromatography was used to separate the eicosanoids. The relationships between the potassium content and the amounts of fatty acids, as well as potassium and arachidonic acid (AAs) derivatives, were analysed. Significant negative correlations were found with, among others, pentadecanoic acid, palmitic acid, stearic acid and arachidic acid, whereas a positive correlation was found with neuronic acid. Positive correlations were observed with 9, 13 HODE (derivatives synthetized from linolenic acid) and 5 oxo ETE and 5 HETE (from 5 LOX pathway). Saturated fatty acids reduce the influx of potassium into the cell by destabilizing the pH of the cytosol, and thus exacerbating the inflammatory response through the activation of the AA cascade. Therefore, improving the flow of potassium inside the cell is important in the treatment of patients.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczein, Poland
- Correspondence: (M.S.); (K.P.-N.)
| | - Kamila Pokorska-Niewiada
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology in Szczecin, 71-374 Szczecin, Poland
- Correspondence: (M.S.); (K.P.-N.)
| | - Lidia Kwiatkowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczein, Poland
| | - Jolanta Nawrocka-Rutkowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University Szczecin, 71-252 Szczecin, Poland
| | - Iwona Szydłowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University Szczecin, 71-252 Szczecin, Poland
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, 72-009 Police, Poland
| |
Collapse
|
2
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
3
|
Saquib Q, Siddiqui MA, Ansari SM, Alwathnani HA, Al-Khedhairy AA. Carbofuran cytotoxicity, DNA damage, oxidative stress, and cell death in human umbilical vein endothelial cells: Evidence of vascular toxicity. J Appl Toxicol 2021; 41:847-860. [PMID: 33629750 DOI: 10.1002/jat.4150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Carbofuran is a broad-spectrum carbamate insecticide, which principally inhibits the acetylcholinesterase (AChE) enzyme in the nervous system. Nonetheless, their selective action is not restricted to a single species and expanded to humans. No studies are available on the toxicological effects of carbofuran in the endothelial cells (ECs), which first confronts the toxicants in blood vessels. Hence, we have exposed the human umbilical vein ECs (HUVECs) with carbofuran for 24 h, which significantly reduced the cell survival to 25.16% and 33.48% at 500 and 1,000 μM analyzed by MTT assay. In the neutral red uptake (NRU) assay, 16.68%, 30.99%, and 58.11% survival decline was found at 250, 500, and 1,000 μM of carbofuran. HUVECs exposed to carbofuran showed significant increase in the intracellular reactive oxygen species (ROS), indicating oxidative stress at low concentrations. In parallel, HUVECs showed hyperpolarization effects in the mitochondrial membrane potential (ΔΨm) upon carbofuran exposure. Carbofuran induced DNA damage in HUVECs measured as 8.80, 11.82, 35.56, and 79.69 Olive tail moment (OTM) in 100-, 250-, 500-, and 1,000-μM exposure groups. Flow cytometric analysis showed apoptotic peak (SubG1) and G2M arrest in the HUVECs exposed to carbofuran. Overall, our novel data confirm that carbofuran is toxic for the EC cells, especially at the higher concentrations, which may affect the vascular functions and possibly angiogenesis. Hence, carbofuran should be applied judiciously, and detailed vascular studies are warranted to gain an in-depth information focusing the transcriptomic and translation changes employing suitable in vivo and in vitro test models.
Collapse
Affiliation(s)
- Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.,Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maqsood A Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sabiha M Ansari
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hend A Alwathnani
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Carbofuran hampers oligodendrocytes development leading to impaired myelination in the hippocampus of rat brain. Neurotoxicology 2019; 70:161-179. [DOI: 10.1016/j.neuro.2018.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
|
5
|
Picot RAC, Puiatti M, Ben Altabef A, Rubira RJG, Sanchez-Cortes S, Diaz SB, Tuttolomondo ME. A Raman, SERS and UV-circular dichroism spectroscopic study of N-acetyl-l-cysteine in aqueous solutions. NEW J CHEM 2019. [DOI: 10.1039/c9nj02427a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work is to evaluate the vibrational and structural properties of N-acetyl-l-cysteine (NAC), and its molecular structure and electronic properties in relation to the action of thiol and amine groups at different pH.
Collapse
Affiliation(s)
- R. A. Cobos Picot
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - M. Puiatti
- INFIQC – CONICET
- Instituto de Investigaciones en Físico-Química Orgánica de Córdoba, – Facultad de Químicas
- Universidad Nacional de Córdoba
- Córdoba
- Argentina
| | - A. Ben Altabef
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - R. J. G. Rubira
- São Paulo State University (UNESP)
- School of Technology and Applied Sciences
- Presidente Prudente
- Brazil
| | | | - S. B. Diaz
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - M. E. Tuttolomondo
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| |
Collapse
|
6
|
Elbaky NAA, El-Orabi NF, Fadda LM, Abd-Elkader OH, Ali HM. Role of N-Acetylcysteine and Coenzyme Q10 in the Amelioration of Myocardial Energy Expenditure and Oxidative Stress, Induced by Carbon Tetrachloride Intoxication in Rats. Dose Response 2018; 16:1559325818790158. [PMID: 30116167 PMCID: PMC6088489 DOI: 10.1177/1559325818790158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
This study is designed to evaluate the potential impact of N-acetyl cysteine (NAC) and coenzyme Q10 (CoQ10) each alone or in combination against carbon tetrachloride (CCl4)-induced cardiac damage in rats. Animals were treated with CCl4 in single intraperitoneal dose of 1 mL/Kg body weight; CCl4-intoxicated animals were pretreated with 20 mg/kg/d NAC or pretreated with 200 mg/kg/d CoQ10 or NAC and CoQ10 with the same previously mentioned doses. Carbon tetrachloride-intoxicated rats showed a significant elevation in nitric oxide and lipid peroxides and downregulation in reduced glutathione level and calcium adenosine triphosphatase. Cardiac glycolytic enzymes levels such as lactate dehydrogenase, phosphofructokinase, and hexokinase were declined coupled with a reduction in glucose content after CCl4 treatment. Moreover, myocardial hydroxyproline level was significantly increased after CCl4-treatment indicating accumulation of interstitial collagen. N-acetyl cysteine and/or CoQ10 effectively alleviated the disturbances in myocardial oxidative stress and antioxidant markers. These antioxidants effectively upregulated the reduction in cardiac energetic biomarkers due to CCl4 treatment. N-acetyl cysteine and/or CoQ10 significantly decreased hydroxyproline level compared to that of CCl4-treated rats. The current data showed that the aforementioned antioxidants have a remarkable cardioprotective effect, suggesting that they may be useful as prophylactic agents against the detrimental effects of cardiotoxins.
Collapse
Affiliation(s)
- Nayira A. Abd Elbaky
- Department of Pharmacology, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology, Al-Azhar University, Cairo, Egypt
| | - Naglaa F. El-Orabi
- Department of Pharmacology, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Suez Canal University, Ismailia, Egypt
| | - Laila M. Fadda
- Department of Pharmacology, King Saud University, Riyadh, Saudi Arabia
| | - Omar H. Abd-Elkader
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
- Electron Microscope and Thin Films Department, National Research Center, Cairo, Egypt
| | - Hanaa M. Ali
- Department of Genetics and Cytology, National Research Center, Cairo, Egypt
- King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Seth B, Yadav A, Agarwal S, Tiwari SK, Chaturvedi RK. Inhibition of the transforming growth factor-β/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J Biol Chem 2017; 292:19423-19440. [PMID: 28982980 DOI: 10.1074/jbc.m117.798074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The widely used carbamate pesticide carbofuran causes neurophysiological and neurobehavioral deficits in rodents and humans and therefore poses serious health hazards around the world. Previously, we reported that gestational carbofuran exposure has detrimental effects on hippocampal neurogenesis, the generation of new neurons from neural stem cells (NSC), in offspring. However, the underlying cellular and molecular mechanisms for carbofuran-impaired neurogenesis remain unknown. Herein, we observed that chronic carbofuran exposure from gestational day 7 to postnatal day 21 altered expression of genes and transcription factors and levels of proteins involved in neurogenesis and the TGF-β pathway (i.e. TGF-β; SMAD-2, -3, and -7; and SMURF-2) in the rat hippocampus. We found that carbofuran increases TGF-β signaling (i.e. increased phosphorylated SMAD-2/3 and reduced SMAD-7 expression) in the hippocampus, which reduced NSC proliferation because of increased p21 levels and reduced cyclin D1 levels. Moreover, the carbofuran-altered TGF-β signaling impaired neuronal differentiation (BrdU/DCX+ and BrdU/NeuN+ cells) and increased apoptosis and neurodegeneration in the hippocampus. Blockade of the TGF-β pathway with the specific inhibitor SB431542 and via SMAD-3 siRNA prevented carbofuran-mediated inhibition of neurogenesis in both hippocampal NSC cultures and the hippocampus, suggesting the specific involvement of this pathway. Of note, both in vitro and in vivo studies indicated that TGF-β pathway attenuation reverses carbofuran's inhibitory effects on neurogenesis and associated learning and memory deficits. These results suggest that carbofuran inhibits NSC proliferation and neuronal differentiation by altering TGF-β signaling. Therefore, we conclude that TGF-β may represent a potential therapeutic target against carbofuran-mediated neurotoxicity and neurogenesis disruption.
Collapse
Affiliation(s)
- Brashket Seth
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Anuradha Yadav
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| | - Swati Agarwal
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Shashi Kant Tiwari
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.,the Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Rajnish Kumar Chaturvedi
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India, .,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
8
|
Chahal KS, Prakash A, Majeed ABA. The role of multifunctional drug therapy against carbamate induced neuronal toxicity during acute and chronic phase in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:220-229. [PMID: 26151868 DOI: 10.1016/j.etap.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The current study has been designed to examine the effect of multifunctional drug therapy on carbofuran induced acute (2.187 mg/kg, s.c.) and sub-acute (0.2187 mg/kg, s.c.) neurotoxicity in male wistar rats. Drug treatment which includes nimodipine (Ca(2+) channel blocker), diazepam, ropinirole (dopamine agonist) and GSPE (antioxidant) was started 2h after carbofuran administration. Morris water maze was employed for aiming spatial memory. Narrow beam walk and rotarod were employed for testing motor functions. Brain acetylcholinesterase activity, thiobarbituric acid reactive species, nitrite, reduced glutathione, catalase levels, and mitochondrial complexes were also estimated. Carbofuran treatment resulted in significant development of cognitive and motor functions manifested as impairment in learning and memory along with increased thiobarbituric acid reactive species, nitrite levels and decreased acetylcholinesterase activity, reduced glutathione, catalase levels, and mitochondrial complexes. The standard antidote therapy (atropine) was not able to provide neuroprotection but was able to provide symptomatic relief. The multifunctional drug therapy attenuated carbofuran induced cognitive and motor dysfunction, acetylcholinesterase activity and other biochemical parameters. The triple combination in sub-acute study may be avoided in future as two drug combinations provide adequate neuroprotection. Thus it can be concluded that standard antidotal therapy may not provide neuroprotection while the multifunctional drug therapy offers neuroprotection against carbofuran and may dramatically increase survival and life quality.
Collapse
Affiliation(s)
- Karan Singh Chahal
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, I.S.F. College of Pharmacy, Moga, Punjab, India; Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia.
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet 2014; 10:e1004560. [PMID: 25122208 PMCID: PMC4133159 DOI: 10.1371/journal.pgen.1004560] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
The increase in availability of whole genome sequences makes it possible to search for evidence of adaptation at an unprecedented scale. Despite recent progress, our understanding of the adaptive process is still very limited due to the difficulties in linking adaptive mutations to their phenotypic effects. In this study, we integrated different levels of biological information to pinpoint the ecologically relevant fitness effects and the underlying molecular and biochemical mechanisms of a putatively adaptive TE insertion in Drosophila melanogaster: the pogo transposon FBti0019627. We showed that other than being incorporated into Kmn1 transcript, FBti0019627 insertion also affects the polyadenylation signal choice of CG11699 gene. Consequently, only the short 3'UTR transcript of CG11699 gene is produced and the expression level of this gene is higher in flies with the insertion. Our results indicated that increased CG11699 expression leads to xenobiotic stress resistance through increased ALDH-III activity: flies with FBti0019627 insertion showed increased survival rate in response to benzaldehyde, a natural xenobiotic, and to carbofuran, a synthetic insecticide. Although differences in survival rate between flies with and without the insertion were not always significant, when they were, they were consistent with FBti0019627 mediating resistance to xenobiotics. Taken together, our results provide a plausible explanation for the increase in frequency of FBti0019627 in natural populations of D. melanogaster and add to the limited number of examples in which a natural genetic mutation has been linked to its ecologically relevant phenotype. Furthermore, the widespread distribution of TEs across the tree of life and conservation of stress response pathways across organisms make our results relevant not only for Drosophila, but for other organisms as well.
Collapse
|
10
|
Jaiswal SK, Siddiqi NJ, Sharma B. Carbofuran Induced Oxidative Stress Mediated Alterations in Na+-K+-ATPase Activity in Rat Brain: Amelioration by Vitamin E. J Biochem Mol Toxicol 2014; 28:320-7. [DOI: 10.1002/jbt.21568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry; College of Science; King Saud University; Riyadh 11495 Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry; University of Allahabad; Allahabad 211002 India
| |
Collapse
|
11
|
Carbofuran Induced Oxidative Stress in Rat Heart: Ameliorative Effect of Vitamin C. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/824102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the effect of carbofuran on the levels of certain biomarkers in heart of rat exposed to sublethal concentrations of pesticide for 30 days after each interval of 24 h. The ameliorative effect of vitamin C by pretreatment of rats was also monitored. The results indicated that the activities of acetylcholinesterase and lactate dehydrogenase (LDH) decreased significantly in rat heart tissues, the extent of inhibition being concentration dependent. In contrast, the level of LDH increased in serum. The levels of malondialdehyde, total thiols, and glutathione were significantly elevated whereas the activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione-S-transferase were remarkably decreased in rat heart tissues. The serum concentrations of cholesterol increased by 47 and 77% and high density lipids decreased by 35 and 64%, respectively, due to exposure to 5 and 10% LD50 of carbofuran. The prior treatment of rats with vitamin C (100 mg kg−1 body weight) exerted significant ameliorative effect. The recovery was higher at low carbofuran concentration (5%) tested. The results indicated that carbofuran induced oxidative stress and caused damage to cardiac tissues, which could be recovered by prior application of vitamin C.
Collapse
|
12
|
The Interaction between Pesticide Use and Genetic Variants Involved in Lipid Metabolism on Prostate Cancer Risk. J Cancer Epidemiol 2012; 2012:358076. [PMID: 22919386 PMCID: PMC3419400 DOI: 10.1155/2012/358076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/02/2012] [Indexed: 11/24/2022] Open
Abstract
Background. Lipid metabolism processes have been implicated in prostate carcinogenesis. Since several pesticides are lipophilic or are metabolized via lipid-related mechanisms, they may interact with variants of genes in the lipid metabolism pathway. Methods. In a nested case-control study of 776 cases and 1444 controls from the Agricultural Health Study (AHS), a prospective cohort study of pesticide applicators, we examined the interactions between 39 pesticides (none, low, and high exposure) and 220 single nucleotide polymorphisms (SNPs) in 59 genes. The false discovery rate (FDR) was used to account for multiple comparisons. Results. We found 17 interactions that displayed a significant monotonic increase in prostate cancer risk with pesticide exposure in one genotype and no significant association in the other genotype. The most noteworthy association was for ALOXE3 rs3027208 and terbufos, such that men carrying the T allele who were low users had an OR of 1.86 (95% CI = 1.16–2.99) and high users an OR of 2.00 (95% CI = 1.28–3.15) compared to those with no use of terbufos, while men carrying the CC genotype did not exhibit a significant association. Conclusion. Genetic variation in lipid metabolism genes may modify pesticide associations with prostate cancer; however our results require replication.
Collapse
|
13
|
TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion. Physiol Behav 2012; 106:122-8. [DOI: 10.1016/j.physbeh.2012.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 01/05/2023]
|
14
|
Devi PU, Saraogi P, Manocha A, Vohora D. Pharmacological and biochemical analysis of interactions between N-acetylcysteine and some antiepileptic drugs on experimental seizures in mice. CNS Neurosci Ther 2012; 18:406-413. [PMID: 22537319 PMCID: PMC6493429 DOI: 10.1111/j.1755-5949.2011.00278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE In view of a putative role of oxidative stress in the pathophysiology of seizures, this study addressed the interactions between N-acetylcysteine (NAC), a potent antioxidant and two antiepileptic drugs sodium valproate (SVP) and phenytoin (PHT) on experimental seizures in mice. METHODS The interaction was studied at three fixed ratio combinations (i.e., 1:1, 1:3, and 3:1) in the mouse maximal electroshock (MES) test using isobolographic analysis. Markers of oxidative stress (reduced glutathione [GSH] and malondialdehyde [MDA]) were estimated in the cortex of mice pretreated with either of these drugs alone or their 3:1 ratio combinations at the experimentally determined ED(50) values (ED(50 exp) values). The grip strength and spontaneous alternation behavior (SAB) were also assessed. In addition, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and calcium levels were estimated. RESULTS We found an anticonvulsant action of NAC in the MES test. Further, the ED(50 exp) values for the combinations of PHT and NAC did not differ from the theoretically calculated ED(50) values indicating additive effects. In case of SVP and NAC, however, the ED(50 exp) values were lower than the theoretically calculated ED(50) values. The interaction of SVP with NAC at the fixed ratios of 1:3 and 3:1 was found to be synergistic. No significant changes were observed in the grip strength, SAB, cortical GSH and MDA levels, serum AST, ALT, ALP, or calcium levels. CONCLUSION Our results thus hold promise for the use of NAC as an adjunct to PHT and SVP therapy.
Collapse
Affiliation(s)
- P. Uma Devi
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - P. Saraogi
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - A. Manocha
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
15
|
Mishra D, Tiwari SK, Agarwal S, Sharma VP, Chaturvedi RK. Prenatal carbofuran exposure inhibits hippocampal neurogenesis and causes learning and memory deficits in offspring. Toxicol Sci 2012; 127:84-100. [PMID: 22240977 DOI: 10.1093/toxsci/kfs004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neurogenesis is a process of generation of new neurons in the hippocampus and associated with learning and memory. Carbofuran, a carbamate pesticide, elicits several neurochemical, neurophysiological, and neurobehavioral deficits. We evaluated whether chronic prenatal oral exposure of carbofuran during gestational days 7-21 alters postnatal hippocampal neurogenesis at postnatal day 21. We found carbofuran treatment significantly decreased bromodeoxyuridine (BrdU) positive cell proliferation and long-term survival in the hippocampus only but not in the cerebellum. We observed a reduced number of transcription factor SOX-2 and glial fibrillary acidic protein (GFAP) colabeled cells, decreased nestin messenger RNA (mRNA) expression, and decreased histone-H3 phosphorylation following carbofuran treatment, suggesting a decreased pool of neural progenitor cells (NPC). Colocalization of BrdU with doublecortin (DCX), neuronal nuclei (NeuN), and GFAP suggested decreased neuronal differentiation and increased glial differentiation by carbofuran. The number of DCX(+) and NeuN(+) neurons, NeuN protein levels, and fibers length of DCX(+) neurons were decreased by carbofuran. Carbofuran caused a significant downregulation of mRNA expression of the neurogenic genes/transcription factors such as neuregulin, neurogenin, and neuroD1 and upregulation of the gliogenic gene Stat3. Carbofuran exposure led to increased BrdU/caspase 3 colabeled cells, an increased number of degenerative neurons and profound deficits in learning and memory processes. The number and size of primary neurospheres derived from the hippocampus of carbofuran-treated rats were decreased. These results suggest that early gestational carbofuran exposure diminishes neurogenesis, reduces the NPC pool, produces neurodegeneration in the hippocampus, and causes cognitive impairments in rat offspring.
Collapse
Affiliation(s)
- Divya Mishra
- Developmental Toxicology Division, Systems Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow-226001, India
| | | | | | | | | |
Collapse
|
16
|
Diazoxide preconditioning against seizure-induced oxidative injury is via the PI3K/Akt pathway in epileptic rat. Neurosci Lett 2011; 495:130-4. [DOI: 10.1016/j.neulet.2011.03.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/08/2011] [Accepted: 03/18/2011] [Indexed: 11/20/2022]
|
17
|
Andreotti G, Hou L, Beane Freeman LE, Mahajan R, Koutros S, Coble J, Lubin J, Blair A, Hoppin JA, Alavanja M. Body mass index, agricultural pesticide use, and cancer incidence in the Agricultural Health Study cohort. Cancer Causes Control 2010; 21:1759-75. [PMID: 20730623 PMCID: PMC2962760 DOI: 10.1007/s10552-010-9603-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 06/03/2010] [Indexed: 01/22/2023]
Abstract
Obesity is associated with increased risks of several cancers including colon and female breast. Pesticide use in agricultural populations has also been linked with higher risks of various cancers. However, the interaction between obesity and pesticide use on cancer risk has not been well studied. Using data from the Agricultural Health Study, we examined the association between body mass index (BMI) and the risk of cancer at 17 sites and the interaction between BMI and pesticide use. Pesticide applicators residing in Iowa and North Carolina and their spouses were enrolled between 1993 and 1997 and given a self-administered questionnaire to obtain pesticide use and other information. This analysis included 39,628 men and 28,319 women with height and weight data who were cancer-free at enrollment. Among these participants, 4,432 were diagnosed with cancer between enrollment and 2005 and 64% were overweight or obese. BMI (per 1 kg/m(2)) was positively associated with colon cancer in men (hazard ratio (HR) 1.05, 95% confidence interval (CI) 1.02-1.09) and breast cancer in postmenopausal women (HR 1.03, 95% CI 1.01-1.06). In contrast, BMI was inversely associated with lung cancer in men, with a significant association in ever smokers (HR 0.92, 95% CI 0.88-0.97) and a null association in never smokers. The positive association between BMI and colon cancer in men was significant in those who ever used carbofuran (HR = 1.10, 95% CI 1.04-1.17; p-interaction = 0.04) or metolachlor (HR = 1.09, 95% CI 1.04-1.15; p-interaction = 0.02) but was null in non-users of these pesticides. Among male ever smokers, the inverse association between BMI and lung cancer was significant in non-users of carbofuran (HR = 0.87, 95% CI = 0.82-0.92) but was null in users of carbofuran (p-interaction = 0.02). These findings suggest that certain pesticides may modify the effects of BMI on the risks of colon and lung cancers.
Collapse
Affiliation(s)
- Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, DHHS, 6120 Executive Blvd., EPS 8011, MSC 7240, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ahn KW, Kim SW, Kang HG, Kim KH, Park YH, Choi WJ, Park HM. Deletion of GBG1/AYR1 Alters Cell Wall Biogenesis in Saccharomyces cerevisiae. MYCOBIOLOGY 2010; 38:102-107. [PMID: 23956635 PMCID: PMC3741558 DOI: 10.4489/myco.2010.38.2.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 06/02/2023]
Abstract
We identified a gene for β-1,3-glucan synthesis (GBG1), a nonessential gene whose disruption alters cell wall synthesis enzyme activities and cell wall composition. This gene was cloned by functional complementation of defects in β-1,3-glucan synthase activity of the the previously isolated Saccharomyces cerevisiae mutant LP0353, which displays a number of cell wall defects at restrictive temperature. Disruption of the GBG1 gene did not affect cell viability or growth rate, but did cause alterations in cell wall synthesis enzyme activities: reduction of β-1,3-glucan synthase and chitin synthase III activities as well as increased chitin synthase I and II activities. GBG1 disruption also showed altered cell wall composition as well as susceptibility toward cell wall inhibitors such as Zymolyase, Calcofluor white, and Nikkomycin Z. These results indicate that GBG1 plays a role in cell wall biogenesis in S. cerevisiae.
Collapse
Affiliation(s)
- Ki-Woong Ahn
- Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Singh M, Sandhir R, Kiran R. Alterations in Ca2+ homeostasis in rat erythrocytes with atrazine treatment: positive modulation by vitamin E. Mol Cell Biochem 2010; 340:231-8. [DOI: 10.1007/s11010-010-0422-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/10/2010] [Indexed: 11/28/2022]
|
20
|
Liu J, Wang A, Li L, Huang Y, Xue P, Hao A. Oxidative stress mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus. Seizure 2010; 19:165-72. [PMID: 20149694 DOI: 10.1016/j.seizure.2010.01.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022] Open
Abstract
Oxidative stress, which is defined as the over-production of free radicals, can dramatically alter neuronal function and has been linked to status epilepticus (SE). The pathological process and underlying mechanisms involved in the oxidative stress during SE are still not fully clear. In the current study, SE was induced in rats by lithium-pilocarpine administration. Our data show that hippocampal neuron death occurs at 6h and is sustained for 7 days after SE. The production of nitric oxide (NO) started to increase at 30 min and was evident at 6h and 7 days after SE, which coincided with increased expression of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and malondialdehyde (MDA) after SE, whereas, activated caspase-3 prominently appeared at 7 days after SE. Further, FK506, an immunosuppressant, partially rescued the neuron death and attenuated the expression of NO, nNOS, iNOS, MDA and activated caspase-3. Taken together, our study indicates that oxidative stress mediated hippocampal neuron death occurs prior to caspase-3 activation and that FK506 plays an important role in protecting hippocampal neurons during status epilepticus.
Collapse
Affiliation(s)
- Jinzhi Liu
- Department of Neurology, Qianfoshan Hospital, Medical School of Shandong University, No. 66, Jingshi Road, Jinan, Shandong 250014, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Neurochemical changes on oxidative stress in rat hippocampus during acute phase of pilocarpine-induced seizures. Pharmacol Biochem Behav 2010; 94:341-5. [DOI: 10.1016/j.pbb.2009.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 09/13/2009] [Accepted: 09/21/2009] [Indexed: 11/19/2022]
|
22
|
Kamboj SS, Chopra K, Sandhir R. Hyperglycemia-induced alterations in synaptosomal membrane fluidity and activity of membrane bound enzymes: beneficial effect of N-acetylcysteine supplementation. Neuroscience 2009; 162:349-58. [PMID: 19426784 DOI: 10.1016/j.neuroscience.2009.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/14/2009] [Accepted: 05/02/2009] [Indexed: 12/20/2022]
Abstract
Diabetic encephalopathy is characterized by impaired cognitive functions that appear to underlie neuronal damage triggered by glucose driven oxidative stress. Hyperglycemia-induced oxidative stress in diabetic brain may initiate structural and functional changes in synaptosomal membranes. The objective of the present study was to examine the neuroprotective role of N-acetylcysteine (NAC) in hyperglycemia-induced alterations in lipid composition and activity of membrane bound enzymes (Na(+),K(+)-ATPase and Ca(2+)-ATPase) in the rodent model of type 1 diabetes. Male Wistar rats weighing between 180 and 200 g were rendered diabetic by a single injection of streptozotocin (50 mg/kg body weight, i.p.). The diabetic animals were administered NAC (1.4-1.5 g/kg body weight) for eight weeks and lipid composition along with membrane fluidity were determined. A significant increase in lipid peroxidation was observed in cerebral cortex of diabetic rats. NAC administration on the other hand lowered the hyperglycemia-induced lipid peroxidation to near control levels. The increased lipid peroxidation following chronic hyperglycemia was accompanied by a significant increase in the total lipids which can be attributed to increase in the levels of cholesterol, triglycerides and glycolipids. On the contrary phospholipid and ganglioside levels were decreased. Hyperglycemia-induced increase in cholesterol to phospholipid ratio reflected decrease in membrane fluidity. Fluorescence polarization (p) with DPH also confirmed decrease in synaptosomal membrane fluidity that influenced the activity of membrane bound enzymes. An inverse correlation was found between fluorescence polarization with the activities of Na(+),K(+)-ATPase (r(2)=0.416, P<0.05) and Ca(2+) ATPase (r(2)=0.604, P<0.05). NAC was found to significantly improve lipid composition, restore membrane fluidity and activity of membrane bound enzymes. Our results clearly suggest perturbations in lipid composition and membrane fluidity as a major factor in the development of diabetic encephalopathy. Furthermore, NAC administration ameliorated the effect of hyperglycemia on oxidative stress and alterations in lipid composition thereby restoring membrane fluidity and activity of membrane bound enzymes.
Collapse
Affiliation(s)
- S Singh Kamboj
- Department of Biochemistry, Basic Medical Science Block, Panjab University, Sector-14, Chandigarh 160014, India
| | | | | |
Collapse
|
23
|
Dutra BK, Fernandes FA, Lauffer AL, Oliveira GT. Carbofuran-induced alterations in the energy metabolism and reproductive behaviors of Hyalella castroi (Crustacea, Amphipoda). Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:640-6. [PMID: 19358339 DOI: 10.1016/j.cbpc.2009.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Continuous or pulse exposure to pesticides may have negative effects on non-target organisms, resulting in a number of pathological and disturbed biochemical processes, including changes in energy budgets. The objective of this investigation was to examine the potential effects of carbofuran on the biochemical composition (glycogen, proteins, total lipids, triglycerides and cholesterol), levels of lipoperoxidation, Na+/K+ATPase activity, and reproductive behaviors (number of reproductive pairs, ovigerous females, and number of eggs) in the amphipod Hyalella castroi. The amphipods were collected in spring 2007, in the southern Brazilian highlands. In the laboratory, the animals were kept in aquariums under controlled conditions for 7 days, and after this period were exposed to 1 or 10 microg/L of carbofuran for 7 days. After the period of exposure, the animals were immediately frozen for determination of glycogen, proteins, lipids, triglycerides, total cholesterol, levels of lipoperoxidation, and Na+/K+ATPase activity. During each day of culture, reproductive behaviors were observed. Carbofuran induced significant decreases in biochemical reserves (glycogen, proteins, lipids, triglycerides and cholesterol), a significant increase in lipoperoxidation levels, and a decrease in Na+/K+ATPase activity in both males and females. Studies of all the biochemical parameters seem to be quite promising, in order to assess and predict the effects of toxicants on non-target organisms. The results showed that reproductive behaviors may provide sensitive criteria for assessing ecotoxicological effects. H. castroi lives among rooted aquatic macrophytes, and we suggest that it is a sensitive species that could be used in monitoring studies.
Collapse
Affiliation(s)
- B K Dutra
- Departamento de Ciências Morfofisiológicas, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul, Brasil
| | | | | | | |
Collapse
|
24
|
Rai DK, Rai PK, Rizvi SI, Watal G, Sharma B. Carbofuran-induced toxicity in rats: protective role of vitamin C. ACTA ACUST UNITED AC 2009; 61:531-5. [PMID: 19128948 DOI: 10.1016/j.etp.2008.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Erythrocytes are prone to oxidative stress due to the presence of hemoglobin and polyunsaturated fatty acids. Oxidative stress (OS) is associated with increased osmotic fragility (OF) of erythrocytes. Organophosphate and organocarbamate pesticides are known to cause OS in erythrocytes. We have investigated the effect of a single sub-acute dose of carbofuran (CF), an organocarbamate pesticide and ameliorating role of vitamin C on OF and OS in erythrocytes of Wistar rats. OF and OS were assessed by determining membrane stability in terms of erythrocyte OF and the activities of free radicals scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). We observed a significant alteration in the mean erythrocyte fragility (MEF) at relatively higher NaCl concentration (0.67%) as compared to MEF at 0.55%, 0.58% and 0.56% of NaCl in control, vitamin C- and vitamin C + CF-treated groups, respectively. The activities of CAT and SOD were observed to be elevated by 74.35% and 85.56%, respectively, with significance level of p < or = 0.001, whereas GST activity got significantly (p < or = 0.001) diminished by 46.30% in the erythrocytes of CF-treated rats. Vitamin C treatment exhibited marked (p < or = 0.05) prevention of carbofuran-induced oxidative stress as well as erythrocyte osmotic fragility in the Wistar rats. These results suggest that CF treatment induces OF and OS in the erythrocytes of rats, and pretreatment with vitamin C can mitigate these toxic effects.
Collapse
Affiliation(s)
- Devendra K Rai
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | | | | | | | | |
Collapse
|
25
|
Singh M, Sandhir R, Kiran R. Atrazine-induced alterations in rat erythrocyte membranes: Ameliorating effect of vitamin E. J Biochem Mol Toxicol 2008; 22:363-9. [DOI: 10.1002/jbt.20249] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Dutra BK, Fernandes FA, Oliveira GT. Carbofuran-induced alterations in biochemical composition, lipoperoxidation, and Na+/K+ATPase activity of Hyalella pleoacuta and Hyalella curvispina in bioassays. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:179-88. [PMID: 17936079 DOI: 10.1016/j.cbpc.2007.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 11/29/2022]
Abstract
The present study investigated the effects of carbofuran on the energy metabolism (levels of glycogen, total proteins, total lipids, triglycerides, and lipoperoxidation), Na+/K+ATPase activity, and reproductive parameters (formation of couples, ovigerous females, and mean number of eggs) in the freshwater amphipods Hyalella pleoacuta and Hyalella curvispina. These crustaceans live in limnetic environments of the plateau (H. pleoacuta) and coastal plain (H. curvispina) of the state of Rio Grande do Sul in southern Brazil. The animals were collected in the winter of 2006 in the Vale das Trutas (28 degrees 47'00''S-49 degrees 50'53''W) in the Municipality of São José dos Ausentes, and in Gentil Lagoon (29 degrees 56'30''S, 50 degrees 07'50''W) in the Municipality of Tramandaí. In the laboratory, the amphipods were kept submerged in aquariums under controlled conditions of photoperiod (12 h light: 12 h dark), temperature (23 degrees C+/-1), and constant oxygenation. Animals were exposed to carbofuran at a dose of 5 or 50 microg/L for a period of 7 days. At the end of this period, the animals were immediately frozen for determination of the biochemical parameters, lipoperoxidation levels (TBARS), and enzyme Na+/K+ATPase activity. During each day of culture, several reproductive parameters were observed. Statistical analysis (ANOVA) revealed that carbofuran induces significant decreases in glycogen, proteins, lipids, triglycerides, and Na+/K+ATPase, as well as a significant increase in lipoperoxidation levels. Studies of all the biochemical parameters seem to be quite promising, in order to assess and predict the effects of toxicants on non-target organisms. The results also suggest that the reproductive parameters (formation of couples, ovigerous females and mean number of eggs) may provide sensitive criteria for assessing ecotoxicological effects. Furthermore, H. pleoacuta and H. curvispina are suitable organisms for use in toxicity tests, and we suggest that they are sensitive species that could be used in monitoring studies.
Collapse
Affiliation(s)
- Bibiana Kaiser Dutra
- Departamento de Ciências Morfofisiológicas, Laboratório de Fisiologia da Conservação, Programa de Pós-graduação em Zoologia, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
27
|
Stefanello FM, Kreutz F, Scherer EBS, Breier AC, Vianna LP, Trindade VMT, Wyse ATS. Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 2007; 25:473-7. [PMID: 17890041 DOI: 10.1016/j.ijdevneu.2007.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022] Open
Abstract
Neurological dysfunction is observed in patients with severe hypermethioninemia, whose physiopathology is still poorly understood. In the current study we investigated the effect of chronic administration of methionine on the content and species of gangliosides and phospholipids, as well as on the concentration of cholesterol in rat cerebral cortex. Wistar rats received subcutaneous injections of methionine (1.34-2.68 micromol/g of body weight), twice a day, from the 6th to the 28th day of age and controls received saline. Animals were killed 12h after the last injection. Results showed that methionine administration significantly decreased the total content of lipids in cerebral cortex of rats. We also observed that this amino acid significantly reduced the absolute quantity of the major brain gangliosides (GM1, GD1a, GD1b and GT1b) and phospholipids (sphingomyelin, phosphatidylcholine and phosphatidylethanolamine). We also showed that Na+,K+-ATPase activity and TBARS were changed in cerebral cortex of rats subjected to hypermethioninemia. If confirmed in human beings, these data could suggest that the alteration in lipid composition, Na+,K+-ATPase activity and TBARS caused by methionine might contribute to the neurophysiopathology observed in hypermethioninemic patients.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Rai DK, Sharma B. Carbofuran-Induced Oxidative Stress in Mammalian Brain. Mol Biotechnol 2007; 37:66-71. [PMID: 17914167 DOI: 10.1007/s12033-007-0046-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
Chronic exposure to carbofuran, a carbamate pesticide, via oral administration has been reported to generate reactive oxygen species (ROS) in rat brain. However, information regarding the effect of short-term intraperitoneal (i.p.) carbofuran intoxication on oxidative stress is lacking. In the present study, the effect of carbofuran on oxidative indices in brain of Wistar rats has been determined by exposing the animals to three subacute concentrations (0.2, 0.4 and 0.8 mg/kg body weight) equivalent to 10, 20, and 40%, respectively, of its LD50 (i.p.) for 24 h. Rat liver has been used as a positive control. The results demonstrated that carbofuran treatment at the 3 concentrations tested caused significant increase in lipid peroxidation (LPO) by 12.50, 34.38, and 59.38%, respectively. The increased oxidative stress at same pesticide concentrations significantly induced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase in rat brain; the impact on catalase being more marked only at high-pesticide doses (0.4 and 0.8 mg/kg body weight). Carbofuran also caused reduction in protein content of rat tissues tested. Rat brain was more severely affected by carbofuran than liver. The results clearly demonstrated that i.p. administration of carbofuran accelerated oxidative stress in rat brain in a dose-dependent manner.
Collapse
Affiliation(s)
- Devendra K Rai
- Department of Biochemistry, University of Allahabad, Allahabad, UP 211002, India
| | | |
Collapse
|
29
|
Kamboj A, Sandhir R. Perturbed Synaptosomal Calcium Homeostasis and Behavioral Deficits Following Carbofuran Exposure: Neuroprotection by N-Acetylcysteine. Neurochem Res 2007; 32:507-16. [PMID: 17268844 DOI: 10.1007/s11064-006-9264-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
The protective effects of N-acetylcysteine (NAC) on carbofuran-induced alterations in calcium homeostasis and neurobehavioral functions were investigated in rats. Rats were exposed to carbofuran at a dose of 1 mg/kg body weight, orally for a period of 28 days. A significant decrease in Ca2+ATPase activity was observed following carbofuran exposure with a concomitant increase in K+ -induced (45)Ca2+ uptake through voltage operated calcium channels. This was accompanied with a marked accumulation of intracellular free calcium in synaptosomes. The increase in intracellular calcium levels were associated with an increased lipid peroxidation and decreased glutathione content in carbofuran exposed animals. NAC administration (200 mg/kg body weight, orally) to the carbofuran exposed animals had a beneficial effect on carbofuran-induced alterations in calcium homeostasis and resulted in repletion in glutathione levels and resulted in lowering the extent of lipid peroxidation. Marked impairment in the motor functions were seen following carbofuran exposure, which were evident by the significant decrease in the locomotor activity and reduction in the retention time of the rats on rotating rods. Cognitive deficits were also seen as indicated by the significant decrease in active and passive avoidance response. NAC treatment, on the other hand, protected the animals against carbofuran-induced neurobehavioral deficits. The results support the hypothesis that carbofuran exerts its toxic effects by disrupting calcium homeostasis, which may have serious consequences on neuronal functioning, and clearly show the potential beneficial effects of N-acetylcysteine on carbofuran induced alterations in synaptosomal calcium homeostasis.
Collapse
Affiliation(s)
- Amit Kamboj
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
30
|
Kaur M, Sandhir R. Comparative effects of acute and chronic carbofuran exposure on oxidative stress and drug-metabolizing enzymes in liver. Drug Chem Toxicol 2006; 29:415-21. [PMID: 16931442 DOI: 10.1080/01480540600837969] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The current study has been designed to examine the comparative effects of acute and chronic carbofuran exposure on lipid peroxidation, glutathione levels, and drug-metabolizing enzymes in rat liver. Activity of acetylcholinesterase, a bona fide marker of carbofuran exposure, was markedly inhibited after acute carbofuran exposure, whereas the extent of inhibition was much less after chronic exposure. Lipid peroxidation was accentuated after chronic carbofuran exposure. However, acute exposure resulted in relatively less increase in lipid peroxidation levels than with chronic exposure. Glutathione levels were significantly increased in liver of animals chronically exposed to carbofuran; on the contrary, there was a drastic reduction in glutathione levels after acute exposure. Cytochrome P450 was significantly induced in liver of animals treated with acute as well as chronic carbofuran. The activity of glutathione-S-transferase was induced after both acute and chronic carbofuran exposure; the increase was much higher in chronically exposed animals as compared with animals exposed acutely. Based on the results, it is clear that acute and chronic carbofuran exposure have differential effects on oxidative stress and drug-metabolizing enzymes in liver.
Collapse
Affiliation(s)
- Manjit Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|