1
|
Xiao P, Meng L, Cui X, Liu X, Qin L, Meng F, Cai X, Kong D, An T, Wang H. VP0 Myristoylation Is Essential for Senecavirus A Replication. Pathogens 2024; 13:601. [PMID: 39057827 PMCID: PMC11280471 DOI: 10.3390/pathogens13070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Many picornaviruses require the myristoylation of capsid proteins for viral replication. Myristoylation is a site-specific lipidation to the N-terminal G residue of viral proteins, which is catalyzed by the ubiquitous eukaryotic enzyme N-myristoyltransferase (NMT) by allocating the myristoyl group to the N-terminal G residue. IMP-1088 and DDD85646 are two inhibitors that can deprive NMT biological functions. Whether Senecavirus A (SVA) uses NMT to modify VP0 and regulate viral replication remains unclear. Here, we found that NMT inhibitors could inhibit SVA replication. NMT1 knock-out in BHK-21 cells significantly suppressed viral replication. In contrast, the overexpression of NMT1 in BHK-21 cells benefited viral replication. These results indicated that VP0 is a potential NMT1 substrate. Moreover, we found that the myristoylation of SVA VP0 was correlated to the subcellular distribution of this protein in the cytoplasm. Further, we evaluated which residues at the N-terminus of VP0 are essential for viral replication. The substitution of N-terminal G residue, the myristoylation site of VP0, produced a nonviable virus. The T residue at the fifth position of the substrates facilitates the binding of the substrates to NMT. And our results showed that the T residue at the fifth position of VP0 played a positive role in SVA replication. Taken together, we demonstrated that SVA VP0 myristoylation plays an essential role in SVA replication.
Collapse
Affiliation(s)
- Peiyu Xiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Liang Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xinran Liu
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA;
| | - Lei Qin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Fandan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin 150069, China
| | - Dongni Kong
- Institute of Veterinary Drug Control, No. 8 Nandajie, Zhongguancun, Haidian, Beijing 100081, China;
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (P.X.); (L.M.); (X.C.); qinlei-@163.com (L.Q.); (F.M.); (X.C.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
2
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
3
|
Jacquier M, Kuriakose S, Bhardwaj A, Zhang Y, Shrivastav A, Portet S, Varma Shrivastav S. Investigation of Novel Regulation of N-myristoyltransferase by Mammalian Target of Rapamycin in Breast Cancer Cells. Sci Rep 2018; 8:12969. [PMID: 30154572 PMCID: PMC6113272 DOI: 10.1038/s41598-018-30447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Hormone receptor breast cancers are the most common ones and, about 2 out of every 3 cases of breast cancer are estrogen receptor (ER) positive. Selective ER modulators, such as tamoxifen, are the first line of endocrine treatment of breast cancer. Despite the expression of hormone receptors some patients develop tamoxifen resistance and 50% present de novo tamoxifen resistance. Recently, we have demonstrated that activated mammalian target of rapamycin (mTOR) is positively associated with overall survival and recurrence free survival in ER positive breast cancer patients who were later treated with tamoxifen. Since altered expression of protein kinase B (PKB)/Akt in breast cancer cells affect N-myristoyltransferase 1 (NMT1) expression and activity, we investigated whether mTOR, a downstream target of PKB/Akt, regulates NMT1 in ER positive breast cancer cells (MCF7 cells). We inhibited mTOR by treating MCF7 cells with rapamycin and observed that the expression of NMT1 increased with rapamycin treatment over the period of time with a concomitant decrease in mTOR phosphorylation. We further employed mathematical modelling to investigate hitherto not known relationship of mTOR with NMT1. We report here for the first time a collection of models and data validating regulation of NMT1 by mTOR.
Collapse
Affiliation(s)
- Marine Jacquier
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Shiby Kuriakose
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Apurva Bhardwaj
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Yang Zhang
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada.,Research Institute of Hematology and Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
4
|
Legrand P, Rioux V. Specific roles of saturated fatty acids: Beyond epidemiological data. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| | - Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| |
Collapse
|
5
|
Varland S, Osberg C, Arnesen T. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 2015; 15:2385-401. [PMID: 25914051 PMCID: PMC4692089 DOI: 10.1002/pmic.201400619] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Osberg
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Bardack S, Dalgard CL, Kalinich JF, Kasper CE. Genotoxic changes to rodent cells exposed in vitro to tungsten, nickel, cobalt and iron. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:2922-40. [PMID: 24619124 PMCID: PMC3987013 DOI: 10.3390/ijerph110302922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/03/2022]
Abstract
Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.
Collapse
Affiliation(s)
- Stephanie Bardack
- Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, D.C. 20201, USA.
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - John F Kalinich
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA.
| | - Christine E Kasper
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
7
|
Estrogen-responsive genes overlap with triiodothyronine-responsive genes in a breast carcinoma cell line. ScientificWorldJournal 2014; 2014:969404. [PMID: 24587767 PMCID: PMC3920670 DOI: 10.1155/2014/969404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/19/2013] [Indexed: 11/18/2022] Open
Abstract
It has been well established that estrogen plays an important role in the progression and treatment of breast cancer. However, the role of triiodothyronine (T₃) remains controversial. We have previously shown its capacity to stimulate the development of positive estrogen receptor breast carcinoma, induce the expression of genes (PR, TGF-alpha) normally stimulated by estradiol (E₂), and suppress genes (TGF-beta) normally inhibited by E₂. Since T₃ regulates growth hormones, metabolism, and differentiation, it is important to verify its action on other genes normally induced by E₂. Therefore, we used DNA microarrays to compare gene expression patterns in MCF-7 breast adenocarcinoma cells treated with E₂ and T₃. Several genes were modulated by both E₂ and T₃ in MCF-7 cells (Student's t-test, P < 0.05). Specifically, we found eight genes that were differentially expressed after treatment with both E₂ and T₃, including amphiregulin, fibulin 1, claudin 6, pericentriolar material 1, premature ovarian failure 1B, factor for adipocyte differentiation-104, sterile alpha motif domain containing 9, and likely ortholog of rat vacuole membrane protein 1 (fold change > 2.0, pFDR < 0.05). We confirmed our microarray results by real-time PCR. Our findings reveal that certain genes in MCF-7 cells can be regulated by both E₂ and T₃.
Collapse
|
8
|
|
9
|
In rat hepatocytes, myristic acid occurs through lipogenesis, palmitic acid shortening and lauric acid elongation. Animal 2012; 1:820-6. [PMID: 22444745 DOI: 10.1017/s1751731107000122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The origin of myristic acid in mammalian cells and the regulation of its endogenous cellular low concentration are not known. Another intriguing question is the potential metabolic properties of endogenous myristic acid as compared with exogenous myristic acid. In the present paper, we hypothesised and demonstrated that, in liver cells, in addition to the usual fatty acid synthase (FAS) pathway that produces predominantly palmitic acid and minor amounts of myristic acid, part of endogenous cellular myristic acid also comes from a shortening of palmitic acid, likely by peroxisomal β-oxidation and from lauric acid by elongation. From a nutritional point of view, C16:0 is universally found in natural fats and its shortening to myristic acid could contribute to a non-negligible source of this fatty acid (FA) in the organism. Then, we measured the distribution of endogenously synthesised myristic acid in lipid species and compared it with that of exogenous myristic acid. Our results do not support the hypothesis of different metabolic fates of endogenous and exogenous myristic acid and suggest that whatever the origin of myristic acid, its cellular concentration and lipid distribution are highly regulated.
Collapse
|
10
|
Martin DDO, Beauchamp E, Berthiaume LG. Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 2011; 93:18-31. [PMID: 21056615 DOI: 10.1016/j.biochi.2010.10.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/15/2023]
Abstract
Myristoylation corresponds to the irreversible covalent linkage of the 14-carbon saturated fatty acid, myristic acid, to the N-terminal glycine of many eukaryotic and viral proteins. It is catalyzed by N-myristoyltransferase. Typically, the myristate moiety participates in protein subcellular localization by facilitating protein-membrane interactions as well as protein-protein interactions. Myristoylated proteins are crucial components of a wide variety of functions, which include many signalling pathways, oncogenesis or viral replication. Initially, myristoylation was described as a co-translational reaction that occurs after the removal of the initiator methionine residue. However, it is now well established that myristoylation can also occur post-translationally in apoptotic cells. Indeed, during apoptosis hundreds of proteins are cleaved by caspases and in many cases this cleavage exposes an N-terminal glycine within a cryptic myristoylation consensus sequence, which can be myristoylated. The principal objective of this review is to provide an overview on the implication of myristoylation in health and disease with a special emphasis on post-translational myristoylation. In addition, new advancements in the detection and identification of myristoylated proteins are also briefly reviewed.
Collapse
Affiliation(s)
- Dale D O Martin
- Department of Cell Biology, School of Molecular and Systems Medicine, MSB-5-55, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
11
|
Legrand P, Rioux V. The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 2010; 45:941-6. [PMID: 20625935 PMCID: PMC2974191 DOI: 10.1007/s11745-010-3444-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/21/2010] [Indexed: 12/27/2022]
Abstract
This review summarizes recent findings on the metabolism and biological functions of saturated fatty acids (SFA). Some of these findings show that SFA may have important and specific roles in the cells. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and regulation of gene transcription are presented. In terms of physiology, SFA are involved for instance in lipogenesis, fat deposition, polyunsaturated fatty acids bioavailability and apoptosis. The variety of their functions demonstrates that SFA should no longer be considered as a single group.
Collapse
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Rennes, INRA USC 2012, 65 rue de Saint-Brieuc, CS 84215, Rennes Cedex, France.
| | | |
Collapse
|
12
|
Rioux V, Pédrono F, Legrand P. Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:1-8. [PMID: 20920594 DOI: 10.1016/j.bbalip.2010.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
Myristic acid, the 14-carbon saturated fatty acid (C14:0), usually accounts for small amounts (0.5%-1% weight of total fatty acids) in animal tissues. Since it is a relatively rare molecule in the cells, the specific properties and functional roles of myristic acid have not been fully studied and described. Like other dietary saturated fatty acids (palmitic acid, lauric acid), this fatty acid is usually associated with negative consequences for human health. Indeed, in industrialized countries, its excessive consumption correlates with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of myristoyl-CoA is its ability to be covalently linked to the N-terminal glycine residue of eukaryotic and viral proteins. This reaction is called N-terminal myristoylation. Through the myristoylation of hundreds of substrate proteins, myristic acid can activate many physiological pathways. This review deals with these potentially activated pathways. It focuses on the following emerging findings on the biological ability of myristic acid to regulate the activity of mammalian desaturases: (i) recent findings have described it as a regulator of the Δ4-desaturation of dihydroceramide to ceramide; (ii) studies have demonstrated that it is an activator of the Δ6-desaturation of polyunsaturated fatty acids; and (iii) myristic acid itself is a substrate of some fatty acid desaturases. This article discusses several topics, such as the myristoylation of the dihydroceramide Δ4-desaturase, the myristoylation of the NADH-cytochrome b5 reductase which is part of the whole desaturase complex, and other putative mechanisms.
Collapse
Affiliation(s)
- Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest, INRA USC 2012, Rennes, France.
| | | | | |
Collapse
|
13
|
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010; 3:19-35. [PMID: 19898886 PMCID: PMC2816741 DOI: 10.1007/s12154-009-0032-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/05/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023] Open
Abstract
N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.
Collapse
Affiliation(s)
- Megan H. Wright
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - William P. Heal
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - David J. Mann
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - Edward W. Tate
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
| |
Collapse
|
14
|
Sheng C, Ji H, Miao Z, Che X, Yao J, Wang W, Dong G, Guo W, Lü J, Zhang W. Homology modeling and molecular dynamics simulation of N-myristoyltransferase from protozoan parasites: active site characterization and insights into rational inhibitor design. J Comput Aided Mol Des 2009; 23:375-89. [PMID: 19370313 DOI: 10.1007/s10822-009-9267-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/26/2009] [Indexed: 11/25/2022]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is a cytosolic monomeric enzyme that catalyzes the transfer of the myristoyl group from myristoyl-CoA to the N-terminal glycine of a number of eukaryotic cellular and viral proteins. Recent experimental data suggest NMT from parasites could be a promising new target for the design of novel antiparasitic agents with new mode of action. However, the active site topology and inhibitor specificity of these enzymes remain unclear. In this study, three-dimensional models of NMT from Plasmodium falciparum (PfNMT), Leishmania major (LmNMT) and Trypanosoma brucei (TbNMT) were constructed on the basis of the crystal structures of fungal NMTs using homology modeling method. The models were further refined by energy minimization and molecular dynamics simulations. The active sites of PfNMT, LmNMT and TbNMT were characterized by multiple copy simultaneous search (MCSS). MCSS functional maps reveal that PfNMT, LmNMT and TbNMT share a similar active site topology, which is defined by two hydrophobic pockets, a hydrogen-bonding (HB) pocket, a negatively-charged HB pocket and a positively-charged HB pocket. Flexible docking approaches were then employed to dock known inhibitors into the active site of PfNMT. The binding mode, structure-activity relationships and selectivity of inhibitors were investigated in detail. From the results of molecular modeling, the active site architecture and certain key residues responsible for inhibitor binding were identified, which provided insights for the design of novel inhibitors of parasitic NMTs.
Collapse
Affiliation(s)
- Chunquan Sheng
- School of Pharmacy, Military Key Laboratory of Medicinal Chemistry, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Beauchamp E, Rioux V, Legrand P. [New regulatory and signal functions for myristic acid]. Med Sci (Paris) 2009; 25:57-63. [PMID: 19154695 DOI: 10.1051/medsci/200925157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myristic acid is a 14 carbon saturated fatty acid, which is mostly found in milk fat. In industrialized countries, its excessive consumption is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of this fatty acid is its ability to acylate proteins, a reaction which is called N-terminal myristoylation. This article describes various examples of important cellular regulations where the intervention of myristic acid is proven. Modulations of the cellular concentration of this fatty acid and its associated myristoylation function might be used as regulators of these metabolic pathways.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Rennes-INRA USC 2012, 65, rue de Saint-Brieuc, 35042 Rennes Cedex, France
| | | | | |
Collapse
|
16
|
Bowyer PW, Tate EW, Leatherbarrow RJ, Holder AA, Smith DF, Brown KA. N-myristoyltransferase: a prospective drug target for protozoan parasites. ChemMedChem 2008; 3:402-8. [PMID: 18324715 DOI: 10.1002/cmdc.200700301] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Paul W Bowyer
- Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
17
|
Quintero-Rivera F, Leach NT, de la Chapelle A, Gusella JF, Morton CC, Harris DJ. Is the disruption of an N-myristoyltransferase (NMT2) associated with hypoplastic testes? Am J Med Genet A 2008; 143A:1796-8. [PMID: 17568424 DOI: 10.1002/ajmg.a.31799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabiola Quintero-Rivera
- Massachusetts General Hospital, Center for Human Genetic Research, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
18
|
Beauchamp E, Goenaga D, Le Bloc'h J, Catheline D, Legrand P, Rioux V. Myristic acid increases the activity of dihydroceramide Delta4-desaturase 1 through its N-terminal myristoylation. Biochimie 2007; 89:1553-61. [PMID: 17716801 DOI: 10.1016/j.biochi.2007.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 07/03/2007] [Indexed: 11/16/2022]
Abstract
Dihydroceramide Delta4-desaturase (DES) catalyzes the desaturation of dihydroceramide into ceramide. In mammals, two gene isoforms named DES1 and DES2 have recently been identified. The regulation of these enzymes is still poorly understood. This study was designed to examine the possible N-myristoylation of DES1 and DES2 and the effect of this co-translational modification on dihydroceramide Delta4-desaturase activity. N-MyristoylTransferases (NMT) catalyze indeed the formation of a covalent linkage between myristoyl-CoA and the N-terminal glycine of candidate proteins, as found in the sequence of DES proteins. The expression of both rat DES in COS-7 cells evidenced first that DES1 but not DES2 was associated with an increased dihydroceramide Delta4-desaturase activity. Then, we showed that recombinant DES1 was myristoylated in vivo when expressed in COS-7 cells. In addition, in vitro myristoylation assay with a peptide substrate corresponding to the N-terminal sequence of the protein confirmed that NMT1 has a high affinity for DES1 myristoylation motif (apparent K(m)=3.92 microM). Compared to an unmyristoylable mutant form of DES1 (Gly replaced by an Ala), the dihydroceramide Delta4-desaturase activity of the myristoylable DES1-Gly was reproducibly and significantly higher. Finally, the activity of wild-type DES1 was also linearly increased in the presence of increased concentrations of myristic acid incubated with the cells. These results demonstrate that DES1 is a newly discovered myristoylated protein. This N-terminal modification has a great impact on dihydroceramide Delta4-desaturase activity. These results suggest therefore that myristic acid may play an important role in the biosynthesis of ceramide and in sphingolipid metabolism.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Laboratoire de Biochimie, INRA-Agrocampus Rennes, 65 rue de Saint-Brieuc, CS 84215, 35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Takamune N, Gota K, Misumi S, Tanaka K, Okinaka S, Shoji S. HIV-1 production is specifically associated with human NMT1 long form in human NMT isozymes. Microbes Infect 2007; 10:143-50. [PMID: 18248763 DOI: 10.1016/j.micinf.2007.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/19/2007] [Accepted: 10/28/2007] [Indexed: 11/19/2022]
Abstract
The N-myristoylation of the N-terminal of human immunodeficiency virus type-1 (HIV-1) Pr55(gag) by human N-myristoyltransferase (hNMT) is a prerequisite modification for HIV-1 production. hNMT consists of multiple isozymes encoded by hNMT1 and hNMT2. The hNMT1 isozyme consists of long, medium, and short forms. Here, we investigated which isozyme is crucial for HIV-1 production. Human embryonic kidney (HEK) 293 cells transfected with infectious HIV-1 vectors were used as models of HIV-1-infected cells in this study. The significant reduction in HIV-1 production and the failure of the specific localization of Pr55(gag) in a detergent-resistant membrane fraction were dependent on the knockdown of the different forms of the hNMT1 isozyme but not of the hNMT2 isozyme. Additionally, the coexpression of an inactive mutant hNMT1 isozyme, namely the hNMT1 long form (hNMT1(L)), but not that of other hNMT mutants resulted in a significant reduction in HIV-1 production. These results strongly suggest that HIV-1 production is specifically associated with hNMT1, particularly hNMT1(L), but not with hNMT2 in vivo, contributing to the understanding of a step in HIV-1 replication.
Collapse
Affiliation(s)
- Nobutoki Takamune
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Rioux V, Legrand P. Saturated fatty acids: simple molecular structures with complex cellular functions. Curr Opin Clin Nutr Metab Care 2007; 10:752-8. [PMID: 18089958 DOI: 10.1097/mco.0b013e3282f01a75] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on the biological functions of saturated fatty acids. Some of these findings suggest that saturated fatty acids may have important and specific regulatory roles in the cells. Until now these roles have largely been outweighed by the negative impact of dietary saturated fatty acids on atherosclerosis biomarkers. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and putative physiological roles are described. RECENT FINDINGS The review will focus on the following topics: new aspects on the metabolism of saturated fatty acids; recent reports on the biochemical functions of saturated fatty acids; current investigations on the physiological roles (elucidated and putative) of saturated fatty acids; and a discussion of the nutritional dietary recommendations (amounts and types) of saturated fatty acids. SUMMARY Dietary saturated fatty acids are usually associated with negative consequences for human health. Experimental results on the relationship between doses, physiological effects, specificities and functions of individual saturated fatty acids are, however, conflicting. In this context, this review describes emerging recent evidence that some saturated fatty acids have important and specific biological roles. Such data are needed to allow a balanced view in terms of potential nutritional benefits of saturated fatty acids, and, if necessary, reassessment of the current nutritional dietary recommendations.
Collapse
Affiliation(s)
- Vincent Rioux
- Biochemistry and Human Nutrition Laboratory, Agrocampus Rennes, INRA USC 2012, Rennes, France
| | | |
Collapse
|
21
|
Selvakumar P, Lakshmikuttyamma A, Shrivastav A, Das SB, Dimmock JR, Sharma RK. Potential role of N-myristoyltransferase in cancer. Prog Lipid Res 2007; 46:1-36. [PMID: 16846646 DOI: 10.1016/j.plipres.2006.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer is the second leading cause of malignant death, and better preventive strategies are needed. The treatment of colonic cancer remains difficult because of the lack of effective chemotherapeutic agents; therefore it is important to continue to search for cellular functions that can be disrupted by chemotherapeutic drugs resulting in the inhibition of the development and progression of cancer. The current knowledge of the modification of proteins by myristoylation involving myristoyl-CoA: protein N-myristoyltransferase (NMT) is in its infancy. This process is involved in the pathogenesis of cancer. We have reported for the first time that NMT activity and protein expression were higher in human colorectal cancer, gallbladder carcinoma and brain tumors. In addition, an increase in NMT activity appeared at an early stage in colonic carcinogenesis. It is conceivable therefore that NMT can be used as a potential marker for the early detection of cancer. These observations lead to the possibility of developing NMT specific inhibitors, which may be therapeutically useful. We proposed that HSC70 and/or enolase could be used as an anticancer therapeutic target. This review summarized the status of NMT in cancer which has been carried in our laboratory.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology and Laboratory Medicine, College of Medicine, and Health Research Division, Saskatchewan Cancer Agency, University of Saskatchewan, 20 Campus Drive, Saskatoon, Sask., Canada S7N 4H4
| | | | | | | | | | | |
Collapse
|