1
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
2
|
Fang C, Li T, Li Y, Xu GJ, Deng QW, Chen YJ, Hou YN, Lee HC, Zhao YJ. CD38 produces nicotinic acid adenosine dinucleotide phosphate in the lysosome. J Biol Chem 2018; 293:8151-8160. [PMID: 29632067 DOI: 10.1074/jbc.ra118.002113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenosine dinucleotide phosphate (NAADP) is a Ca2+-mobilizing second messenger that regulates a wide range of biological activities. However, the mechanism of its biogenesis remains controversial. CD38 is the only enzyme known to catalyze NAADP synthesis from NADP and nicotinic acid. CD38-mediated catalysis requires an acidic pH, suggesting that NAADP may be produced in acidic endolysosomes, but this hypothesis is untested. In this study, using human cell lines, we specifically directed CD38 to the endolysosomal system and assessed cellular NAADP production. First, we found that nanobodies targeting various epitopes on the C-terminal domain of CD38 could bind to cell surface-localized CD38 and induce its endocytosis. We also found that CD38 internalization occurred via a clathrin-dependent pathway, delivered CD38 to the endolysosome, and elevated intracellular NAADP levels. We also created a CD38 variant for lysosome-specific expression, which not only withstood the degradative environment in the lysosome, but was also much more active than WT CD38 in elevating cellular NAADP levels. Supplementing CD38-expressing cells with nicotinic acid substantially increased cellular NAADP levels. These results demonstrate that endolysosomal CD38 can produce NAADP in human cells. They further suggest that CD38's compartmentalization to the lysosome may allow for its regulation via substrate access, rather than enzyme activation, thereby providing a reliable mechanism for regulating cellular NAADP production.
Collapse
Affiliation(s)
- Cheng Fang
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ting Li
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ying Li
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Guan Jie Xu
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qi Wen Deng
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ya Jie Chen
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Nan Hou
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hon Cheung Lee
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yong Juan Zhao
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Abstract
Glycans are essential for the maintenance of normal biological function, with alterations in glycan expression being a hallmark of cancer. Cancer stem cells (CSCs) are a subset of cells within a tumour capable of self-renewal, cellular differentiation and resistances to conventional therapies. As is the case with stem cells, marker proteins present on the cell surface are frequently used to identify and enrich CSCs, with the expression of these markers statistical correlating with the likelihood of cancer recurrence and overall patient survival. As such CSC markers are of high clinical relevance. The majority of markers currently used to identify CSC populations are glycoproteins, and although the diverse biological roles for many of these markers are known, the nature and function of the glycan moiety on these glycoproteins remains to be fully elucidated. This mini-review summarises our current knowledge regarding the types and extent of CSC marker glycosylation, and the various roles that these glycans play in CSC biology, including in mediating cell adhesion, metastasis, evading apoptosis, tear shear resistance, tumour growth, maintaining pluripotency, self-renewal, trafficking, maintaining stability, maintaining enzymatic activity and aiding epithelial mesenchymal transitioning. Given that CSCs markers have multiple diverse biological functions, and are potentially of significant diagnostic and therapeutic benefit the search for new markers that are uniquely expressed on CSCs is vital to selectively target/identify this subset of cancer cells. As such we have also outlined how high-throughput lectin microarrays can be used to successfully profile the glycosylation status of CSC and to identify glyco-markers unique to CSCs.
Collapse
|
4
|
Wang G, de Jong RN, van den Bremer ETJ, Parren PWHI, Heck AJR. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry. Anal Chem 2017; 89:4793-4797. [PMID: 28383250 PMCID: PMC5415875 DOI: 10.1021/acs.analchem.6b05129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The determination
of molecular weights (MWs) of heavily glycosylated
proteins is seriously hampered by the physicochemical characteristics
and heterogeneity of the attached carbohydrates. Glycosylation impacts
protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis (PAGE) and size-exclusion chromatography (SEC) analysis. Standard electrospray
ionization (ESI)-mass spectrometry does not provide a direct solution
as this approach is hindered by extensive interference of ion signals
caused by closely spaced charge states of broadly distributed glycoforms.
Here, we introduce a native tandem MS-based approach, enabling charge-state
resolution and charge assignment of protein ions including those that
escape mass analysis under standard MS conditions. Using this method,
we determined the MW of two model glycoproteins, the extra-cellular
domains of the highly and heterogeneously glycosylated proteins CD38
and epidermal growth factor receptor (EGFR), as well as the overall
MW and binding stoichiometries of these proteins in complex with a
specific antibody.
Collapse
Affiliation(s)
- Guanbo Wang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands.,School of Chemistry and Materials Science, Nanjing Normal University , 1 Weyuan Road, Nanjing, Jiangsu 210023, China
| | - Rob N de Jong
- Genmab , Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | | | - Paul W H I Parren
- Genmab , Yalelaan 60, 3584 CM Utrecht, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
5
|
Hara-Yokoyama M. Glycosylation Regulates CD38 Assembly on the Cell Surface. TRENDS GLYCOSCI GLYC 2013. [DOI: 10.4052/tigg.25.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Hara-Yokoyama M, Kukimoto-Niino M, Terasawa K, Harumiya S, Podyma-Inoue KA, Hino N, Sakamoto K, Itoh S, Hashii N, Hiruta Y, Kawasaki N, Mishima-Tsumagari C, Kaitsu Y, Matsumoto T, Wakiyama M, Shirouzu M, Kasama T, Takayanagi H, Utsunomiya-Tate N, Takatsu K, Katada T, Hirabayashi Y, Yokoyama S, Yanagishita M. Tetrameric interaction of the ectoenzyme CD38 on the cell surface enables its catalytic and raft-association activities. Structure 2012; 20:1585-95. [PMID: 22863568 DOI: 10.1016/j.str.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 01/22/2023]
Abstract
The leukocyte cell-surface antigen CD38 is the major nicotinamide adenide dinucleotide glycohydrolase in mammals, and its ectoenzyme activity is involved in calcium mobilization. CD38 is also a raft-dependent signaling molecule. CD38 forms a tetramer on the cell surface, but the structural basis and the functional significance of tetramerization have remained unexplored. We identified the interfaces contributing to the homophilic interaction of mouse CD38 by site-specific crosslinking on the cell surface with an expanded genetic code, based on a crystallographic analysis. A combination of the three interfaces enables CD38 to tetramerize: one interface involving the juxtamembrane α-helix is responsible for the formation of the core dimer, which is further dimerized via the other two interfaces. This dimerization of dimers is required for the catalytic activity and the localization of CD38 in membrane rafts. The glycosylation prevents further self-association of the tetramer. Accordingly, the tetrameric interaction underlies the multifaceted actions of CD38.
Collapse
Affiliation(s)
- Miki Hara-Yokoyama
- Section of Biochemistry, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Colgrave ML, Snelling HJ, Shiell BJ, Feng YR, Chan YP, Bossart KN, Xu K, Nikolov DB, Broder CC, Michalski WP. Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of Hendra virus. Glycobiology 2012; 22:572-84. [PMID: 22171062 PMCID: PMC3287018 DOI: 10.1093/glycob/cwr180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/31/2022] Open
Abstract
Hendra virus (HeV) continues to cause morbidity and mortality in both humans and horses with a number of sporadic outbreaks. HeV has two structural membrane glycoproteins that mediate the infection of host cells: the attachment (G) and the fusion (F) glycoproteins that are essential for receptor binding and virion-host cell membrane fusion, respectively. N-linked glycosylation of viral envelope proteins are critical post-translation modifications that have been implicated in roles of structural integrity, virus replication and evasion of the host immune response. Deciphering the glycan composition and structure on these glycoproteins may assist in the development of glycan-targeted therapeutic intervention strategies. We examined the site occupancy and glycan composition of recombinant soluble G (sG) glycoproteins expressed in two different mammalian cell systems, transient human embryonic kidney 293 (HEK293) cells and vaccinia virus (VV)-HeLa cells, using a suite of biochemical and biophysical tools: electrophoresis, lectin binding and tandem mass spectrometry. The N-linked glycans of both VV and HEK293-derived sG glycoproteins carried predominantly mono- and disialylated complex-type N-glycans and a smaller population of high mannose-type glycans. All seven consensus sequences for N-linked glycosylation were definitively found to be occupied in the VV-derived protein, whereas only four sites were found and characterized in the HEK293-derived protein. We also report, for the first time, the existence of O-linked glycosylation sites in both proteins. The striking characteristic of both proteins was glycan heterogeneity in both N- and O-linked sites. The structural features of G protein glycosylation were also determined by X-ray crystallography and interactions with the ephrin-B2 receptor are discussed.
Collapse
Affiliation(s)
- Michelle L Colgrave
- Queensland Bioscience Precinct (QBP), CSIRO Livestock Industries, St Lucia, QLD 4067, Australia
| | - Hayley J Snelling
- Australian Animal Health Laboratory (AAHL), CSIRO Livestock Industries, Geelong, VIC 3220, Australia
| | - Brian J Shiell
- Australian Animal Health Laboratory (AAHL), CSIRO Livestock Industries, Geelong, VIC 3220, Australia
| | - Yan-Ru Feng
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Yee-Peng Chan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Katharine N Bossart
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kai Xu
- Structural Biology Program, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Wojtek P Michalski
- Australian Animal Health Laboratory (AAHL), CSIRO Livestock Industries, Geelong, VIC 3220, Australia
| |
Collapse
|
8
|
Zheng XT, Yang HB, Li CM. Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem 2010; 82:5082-7. [PMID: 20469833 DOI: 10.1021/ac100074n] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sensitive detection of extracellular lactate concentrations at a single cell level is of importance for studying the metabolic alterations in tumor progression. A unique nanoscale optical fiber lactate sensor was developed to monitor the extracellular lactate concentrations of cancer cells by immobilizing its nanotip with lactate dehydrogenases, which could catalyze lactate conversion to generate NADH for sensitive fluorescence detection. The results demonstrate that the fabricated nanosensor can successfully detect the extracellular lactate concentrations for single HeLa, MCF-7, and human fetal osteoblast (hFOB) cells, showing that the cancer cells have distinctly higher extracellular lactate concentrations than normal cells as that predicted by Warburg effect. The nanosensor was also employed to investigate the effect of a monocarboxylate transporter inhibitor on the lactate efflux from cancer cells. Different lactate efflux inhibition profiles were obtained for HeLa and MCF-7 cell lines. This work demonstrates that the nanosensor has potential for evaluating the effect of metabolic agents on cancer metabolism and survival.
Collapse
Affiliation(s)
- Xin Ting Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | |
Collapse
|
9
|
Alvarez-Manilla G, Warren NL, Atwood J, Orlando R, Dalton S, Pierce M. Glycoproteomic analysis of embryonic stem cells: identification of potential glycobiomarkers using lectin affinity chromatography of glycopeptides. J Proteome Res 2010; 9:2062-75. [PMID: 19545112 DOI: 10.1021/pr8007489] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous studies have recently focused on the identification of specific glycan biomarkers, given the important roles that protein linked glycans play, for example, during development and disease progression. The identification of protein glycobiomarkers, which are part of a very complex proteome, has involved the use of fractionation techniques such as lectin affinity chromatography. In this study, the glycoproteomic characterization of pluripotent murine embryonic stem cells (ES) and from ES cells that were differentiated into embroid bodies (EB) was performed using immobilized Concanavalin A (ConA). This procedure allowed the isolation of glycopeptides that express biantennary and hybrid N-linked structures (ConA2 fraction) as well as high mannose glycans (ConA3 fraction) that were abundant in both ES and EB stages. A total of 293 unique N-linked glycopeptide sequences (from 180 glycoproteins) were identified in the combined data sets from ES and EB cells. Of these glycopeptides, a total of 119 sequences were identified exclusively in only one of the lectin-bound fractions (24 in the ES-ConA2, 15 in the ES-ConA3, 16 in the EB-ConA2, and 64 in the EB-ConA3). Results from this study allowed the identification of individual N-glycosylation sites of proteins that express specific glycan types. The absence of some of these lectin-bound glycopeptides in a cell stage suggested that they were derived from proteins that were either expressed exclusively on a defined developmental stage or were expressed in both cell stages but carried the lectin-bound oligosaccharides in only one of them. Therefore, these lectin-bound glycopeptides can be considered as stage-specific glycobiomarkers.
Collapse
|
10
|
Pomicter AD, Shroff SM, Fuss B, Sato-Bigbee C, Brophy PJ, Rasband MN, Bhat MA, Dupree JL. Novel forms of neurofascin 155 in the central nervous system: alterations in paranodal disruption models and multiple sclerosis. Brain 2010; 133:389-405. [PMID: 20129933 PMCID: PMC2822635 DOI: 10.1093/brain/awp341] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 01/08/2023] Open
Abstract
Stability of the myelin-axon unit is achieved, at least in part, by specialized paranodal junctions comprised of the neuronal heterocomplex of contactin and contactin-associated protein and the myelin protein neurofascin 155. In multiple sclerosis, normal distribution of these proteins is altered, resulting in the loss of the insulating myelin and consequently causing axonal dysfunction. Previously, this laboratory reported that mice lacking the myelin-enriched lipid sulphatide are characterized by a progressive deterioration of the paranodal structure. Here, it is shown that this deterioration is preceded by significant loss of neurofascin 155 clustering at the myelin paranode. Interestingly, prolonged electrophoretic separation revealed the existence of two neurofascin 155 bands, neurofascin 155 high and neurofascin 155 low, which are readily observed following N-linked deglycosylation. Neurofascin 155 high is observed at 7 days of age and reaches peak expression at one month of age, while neurofascin 155 low is first observed at 14 days of age and constantly increases until 5 months of age. Studies using conditional neurofascin knockout mice indicated that neurofascin 155 high and neurofascin 155 low are products of the neurofascin gene and are exclusively expressed by oligodendrocytes within the central nervous system. Neurofascin 155 high is a myelin paranodal protein while the distribution of neurofascin 155 low remains to be determined. While neurofascin 155 high levels are significantly reduced in the sulphatide null mice at 15 days, 30 days and 4 months of age, neurofascin 155 low levels remain unaltered. Although maintained at normal levels, neurofascin 155 low is incapable of preserving paranodal structure, thus indicating that neurofascin 155 high is required for paranodal stability. Additionally, comparisons between neurofascin 155 high and neurofascin 155 low in human samples revealed a significant alteration, specifically in multiple sclerosis plaques.
Collapse
Affiliation(s)
- Anthony D. Pomicter
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Seema M. Shroff
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Babette Fuss
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Carmen Sato-Bigbee
- 2 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Peter J. Brophy
- 3 Centre for Neuroscience Research, University of Edinburgh, Edinburgh, Scotland, UK
| | - Matthew N. Rasband
- 4 Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Manzoor A. Bhat
- 5 Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jeffrey L. Dupree
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
11
|
Peng Z, Wu H, Ruiz T, Chen Q, Zhou M, Sun B, Fives-Taylor P. Role of gap3 in Fap1 glycosylation, stability, in vitro adhesion, and fimbrial and biofilm formation of Streptococcus parasanguinis. ACTA ACUST UNITED AC 2007; 23:70-8. [DOI: 10.1111/j.1399-302x.2007.00401.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|