1
|
Liufu S, Lan Q, Liu X, Chen B, Xu X, Ai N, Li X, Yu Z, Ma H. Transcriptome Analysis Reveals the Age-Related Developmental Dynamics Pattern of the Longissimus Dorsi Muscle in Ningxiang Pigs. Genes (Basel) 2023; 14:genes14051050. [PMID: 37239410 DOI: 10.3390/genes14051050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The growth and development of the Longissimus Dorsi muscle are complex, playing an important role in the determination of pork quality. The study of the Longissimus Dorsi muscle at the mRNA level is particularly crucial for finding molecular approaches to improving meat quality in pig breeding. The current study utilized transcriptome technology to explore the regulatory mechanisms of muscle growth and intramuscular fat (IMF) deposition in the Longissimus Dorsi muscle at three core developmental stages (natal stage on day 1, growing stage on day 60, and finishing stage on day 210) in Ningxiang pigs. Our results revealed 441 differentially expressed genes (DEGs) in common for day 1 vs. day 60 and day 60 vs. day 210, and GO (Gene Ontology) analysis showed that candidate genes RIPOR2, MEGF10, KLHL40, PLEC, TBX3, FBP2, and HOMER1 may be closely related to muscle growth and development, while KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that DEGs (UBC, SLC27A5, RXRG, PRKCQ, PRKAG2, PPARGC1A, PLIN5, PLIN4, IRS2, and CPT1B) involved the PPAR (Peroxisome Proliferator-Activated Receptor) signaling pathway and adipocytokine signaling pathway, which might play a pivotal role in the regulation of IMF deposition. PPI (Protein-Protein Interaction Networks) analysis found that the STAT1 gene was the top hub gene. Taken together, our results provide evidence for the molecular mechanisms of growth and development and IMF deposition in Longissimus Dorsi muscle to optimize carcass mass.
Collapse
Affiliation(s)
- Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xueli Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nini Ai
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zonggang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Li Y, Liu Q, Ma Q, Ma Z, Chen J, Yu A, Ma C, Qiu L, Shi H, Liang H, Hu M. Identification of key variants correlated with susceptibility of primary osteoporosis in the Chinese Han group. Ann Hum Genet 2023; 87:63-74. [PMID: 36479902 DOI: 10.1111/ahg.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Primary osteoporosis is a systemic skeletal disease characterized by reduced bone mass and vulnerability to fractures. The genetics of osteoporosis in the Chinese population remain unclear, which hinders the prevention and treatment of osteoporosis in China. This study aimed to explore the susceptibility genes and the roles played by their variants in osteoporosis. METHODS Blood samples were collected from 45 osteoporosis patients and 30 healthy individuals, and genome-wide association study was performed on array data. The expression levels of the candidate gene in different genotypes were further determined by using quantitative real-time PCR. Moreover, the differentiation capacity of bone marrow mesenchymal stem cells under different genotypes from osteoporosis patients was investigated. RESULTS The most significant variant rs1891632 located in the upstream (918 bp) region of CRB2, which could down-regulate the expression levels of CRB2 in genotype-tissue expression database and played an essential role in the regulation of osteoblastic and osteoclastic differentiation during skeletal development. Another significant variant rs1061657 located within the 3'UTR region of TBX3 gene. We found that the mRNA levels of TBX3 decreased in the bMSCs of old osteoporosis patients. Interestingly, osteoblast differentiation capacity and TBX3 mRNA levels were similar between the young healthy individuals carrying derived and ancestral allele of rs1061657, whereas the differentiation capacity and TBX3 mRNA levels dramatically declined in elderly patients with osteoporosis. CONCLUSIONS The variant rs1061657 might affect the osteogenesis of bMSCs in an age-dependent manner and that TBX3 may be a key susceptibility gene for primary osteoporosis. In conclusion, CRB2 and TBX3 may influence the development of osteoporosis; additionally, rs1891632 and rs1061657, as the key variants first reported to be associated with primary osteoporosis, may potentially contribute to predicting the risk of osteoporosis (especially for older individuals) and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Qi Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Qiuye Ma
- Orthopedics, Chongqing Jiulongpo District Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Juan Chen
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - An Yu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Changguo Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Hongsuo Liang
- Joint Surgery Department of the Second People's Hospital of Nanning City, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, China
| |
Collapse
|
3
|
Huang CJ, Choo KB. Circular RNA- and microRNA-Mediated Post-Transcriptional Regulation of Preadipocyte Differentiation in Adipogenesis: From Expression Profiling to Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054549. [PMID: 36901978 PMCID: PMC10002489 DOI: 10.3390/ijms24054549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Adipogenesis is an indispensable cellular process that involves preadipocyte differentiation into mature adipocyte. Dysregulated adipogenesis contributes to obesity, diabetes, vascular conditions and cancer-associated cachexia. This review aims to elucidate the mechanistic details on how circular RNA (circRNA) and microRNA (miRNA) modulate post-transcriptional expression of targeted mRNA and the impacted downstream signaling and biochemical pathways in adipogenesis. Twelve adipocyte circRNA profiling and comparative datasets from seven species are analyzed using bioinformatics tools and interrogations of public circRNA databases. Twenty-three circRNAs are identified in the literature that are common to two or more of the adipose tissue datasets in different species; these are novel circRNAs that have not been reported in the literature in relation to adipogenesis. Four complete circRNA-miRNA-mediated modulatory pathways are constructed via integration of experimentally validated circRNA-miRNA-mRNA interactions and the downstream signaling and biochemical pathways involved in preadipocyte differentiation via the PPARγ/C/EBPα gateway. Despite the diverse mode of modulation, bioinformatics analysis shows that the circRNA-miRNA-mRNA interacting seed sequences are conserved across species, supporting mandatory regulatory functions in adipogenesis. Understanding the diverse modes of post-transcriptional regulation of adipogenesis may contribute to the development of novel diagnostic and therapeutic strategies for adipogenesis-associated diseases and in improving meat quality in the livestock industries.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, School of Agriculture, Chinese Culture University, 11114 Taipei, Taiwan
- Correspondence: (C.-J.H.); (K.B.C.)
| | - Kong Bung Choo
- Department of Preclinical Sciences, M Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Selangor, Malaysia
- Correspondence: (C.-J.H.); (K.B.C.)
| |
Collapse
|
4
|
Wu L, Su C, Yang C, Liu J, Ye Y. TBX3 regulates the transcription of VEGFA to promote osteoblasts proliferation and microvascular regeneration. PeerJ 2022; 10:e13722. [PMID: 35846885 PMCID: PMC9281600 DOI: 10.7717/peerj.13722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 01/17/2023] Open
Abstract
Objective Osteochondral decellularization can promote local vascular regeneration, but the exact mechanism is unknown. The aim of this study is to study osteogenic microvascular regeneration in single cells. Methods The scRNA-seq dataset of human periosteal-derived cells (hPDCs) were analyzed by pySCENIC. To examine the role of TBX3 in osteogenesis and vascularization, cell transfection, qRT-PCR, western blot, and CCK-8 cell proliferation assays were performed. Results TCF7L2, TBX3, FLI1, NFKB2, and EZH2 were found to be transcription factors (TFs) most closely associated with corresponding cells. The regulatory network of these TFs was then visualized. Our study knocked down the expression of TBX3 in human osteoblast cell lines. In the TBX3 knockdown group, we observed decreased expression of VEGFA, VEGFB, and VEGFC. Moreover, Western blot analysis showed that downregulating TBX3 resulted in a reduction of VEGFA expression. And TBX3 stimulated osteoblast proliferation in CCK-8 assays. Conclusion TBX3 regulates VEGFA expression and promotes osteoblast proliferation in skeletal microvasculature formation. The findings provide a theoretical basis for investigating the role of TBX3 in promoting local vascular regeneration.
Collapse
Affiliation(s)
- Lichuang Wu
- Department of Trauma/Joint Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenxian Su
- Department of Trauma/Joint Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuanhua Yang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jinxing Liu
- Shanghai ninth people’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiheng Ye
- Department of Trauma/Joint Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Wang DH, Wu XM, Chen JS, Cai ZG, An JH, Zhang MY, Li Y, Li FP, Hou R, Liu YL. Isolation and characterization mesenchymal stem cells from red panda ( Ailurus fulgens styani) endometrium. CONSERVATION PHYSIOLOGY 2022; 10:coac004. [PMID: 35211318 PMCID: PMC8862722 DOI: 10.1093/conphys/coac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Endometrial mesenchymal stem cells (eMSCs) are undifferentiated endometrial cells with self-renewal, multidirectional differentiation and high proliferation potential. Nowadays, eMSCs have been found in a few species, but it has never been reported in endangered wild animals, especially the red panda. In this study, we successfully isolated and characterized the eMSCs derived from red panda. Red panda eMSCs were fibroblast-like, had a strong proliferative potential and a stable chromosome number. Pluripotency genes including Klf4, Sox2 and Thy1 were highly expressed in eMSCs. Besides, cultured eMSCs were positive for MSC markers CD44, CD49f and CD105 and negative for endothelial cell marker CD31 and haematopoietic cell marker CD34. Moreover, no reference RNA-seq was used to analyse the eMSCs transcriptional expression profile and key pathways. Compared with skin fibroblast cell group, 9104 differentially expressed genes (DEGs) were identified, among which are 5034 genes upregulated, 4070 genes downregulated and the top 20 enrichment pathways of DEGs in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes Genomes (KEGG) mainly associated with G-protein coupled receptor signalling pathway, carbohydrate derivative binding, nucleoside binding, ribosome biogenesis, cell cycle, DNA replication, Ras signalling pathway and purine metabolism. Among the DEGs, some representative genes about promoting MSCs differentiation and proliferation were upregulated and promoting fibroblasts proliferation were downregulated in eMSCs group. Red panda eMSCs also had multiple differentiation ability and could differentiate into adipocytes, chondrocytes and hepatocytes. In conclusion, we, for the first time, isolated and characterized the red panda eMSCs with ability of multiplication and multilineage differentiation in vitro. The new multipotential stem cell could be beneficial not only for the germ plasm resources conservation of red panda, but also for basic or pre-clinical studies in the future.
Collapse
Affiliation(s)
- Dong-Hui Wang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Xue-Mei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jia-Song Chen
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Zhi-Gang Cai
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jun-Hui An
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yuan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Fei-Ping Li
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| |
Collapse
|
6
|
Isoform-specific promotion of breast cancer tumorigenicity by TBX3 involves induction of angiogenesis. J Transl Med 2020; 100:400-413. [PMID: 31570773 PMCID: PMC7044113 DOI: 10.1038/s41374-019-0326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
TBX3 is a member of the highly conserved family of T-box transcription factors involved in embryogenesis, organogenesis and tumor progression. While the functional role of TBX3 in tumorigenesis has been widely studied, less is known about the specific functions of the different isoforms (TBX3iso1 and TBX3iso2) which differ in their DNA-binding domain. We therefore sought to investigate the functional consequence of this highly conserved splice event as it relates to TBX3-induced tumorigenesis. By utilizing a nude mouse xenograft model, we have identified differential tumorigenic potential between TBX3 isoforms, with TBX3iso1 overexpression more commonly associated with invasive carcinoma and high tumor vascularity. Transcriptional analysis of signaling pathways altered by TBX3iso1 and TBX3iso2 overexpression revealed significant differences in angiogenesis-related genes. Importantly, osteopontin (OPN), a cancer-associated secreted phosphoprotein, was significantly up-regulated with TBX3iso1 (but not TBX3iso2) overexpression. This pattern was observed across three non/weakly-tumorigenic breast cancer cell lines (21PT, 21NT, and MCF7). Up-regulation of OPN in TBX3iso1 overexpressing cells was associated with induction of hyaluronan synthase 2 (HAS2) expression and increased retention of hyaluronan in pericellular matrices. These transcriptional changes were accompanied by the ability to induce endothelial cell vascular channel formation by conditioned media in vitro, which could be inhibited through addition of an OPN neutralizing antibody. Within the TCGA breast cancer cohort, we identified an 8.1-fold higher TBX3iso1 to TBX3iso2 transcript ratio in tumors relative to control, and this ratio was positively associated with high-tumor grade and an aggressive molecular subtype. Collectively, the described changes involving TBX3iso1-dependent promotion of angiogenesis may thus serve as an adaptive mechanism within breast cancer cells, potentially explaining differences in tumor formation rates between TBX3 isoforms in vivo. This study is the first of its kind to report significant functional differences between the two TBX3 isoforms, both in vitro and in vivo.
Collapse
|
7
|
Sardar S, Kerr A, Vaartjes D, Moltved ER, Karosiene E, Gupta R, Andersson Å. The oncoprotein TBX3 is controlling severity in experimental arthritis. Arthritis Res Ther 2019; 21:16. [PMID: 30630509 PMCID: PMC6329118 DOI: 10.1186/s13075-018-1797-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Development of autoimmune diseases is the result of a complex interplay between hereditary and environmental factors, with multiple genes contributing to the pathogenesis in human disease and in experimental models for disease. The T-box protein 3 is a transcriptional repressor essential during early embryonic development, in the formation of bone and additional organ systems, and in tumorigenesis. METHODS With the aim to find novel genes important for autoimmune inflammation, we have performed genetic studies of collagen-induced arthritis (CIA), a mouse experimental model for rheumatoid arthritis. RESULTS We showed that a small genetic fragment on mouse chromosome 5, including Tbx3 and three additional protein-coding genes, is linked to severe arthritis and high titers of anti-collagen antibodies. Gene expression studies have revealed differential expression of Tbx3 in B cells, where low expression was accompanied by a higher B cell response upon B cell receptor stimulation in vitro. Furthermore, we showed that serum TBX3 levels rise concomitantly with increasing severity of CIA. CONCLUSIONS From these results, we suggest that TBX3 is a novel factor important for the regulation of gene transcription in the immune system and that genetic polymorphisms, resulting in lower expression of Tbx3, are contributing to a more severe form of CIA and high titers of autoantibodies. We also propose TBX3 as a putative diagnostic biomarker for rheumatoid arthritis.
Collapse
Affiliation(s)
- Samra Sardar
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Nordic Bioscience A/S, Copenhagen, Denmark
| | - Alish Kerr
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Nuritas, Dublin, Ireland
| | - Daniëlle Vaartjes
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Riis Moltved
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: IQVIA, Copenhagen, Denmark Denmark
| | - Edita Karosiene
- Department of Bio and Health Informatics, Kemitorvet 208, Technical University of Denmark, Lyngby, Denmark
- Present address: Novo Nordisk A/S, Copenhagen, Denmark
| | - Ramneek Gupta
- Department of Bio and Health Informatics, Kemitorvet 208, Technical University of Denmark, Lyngby, Denmark
| | - Åsa Andersson
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Rydberg Laboratory of Applied Sciences, ETN, Halmstad University, Halmstad, Sweden
| |
Collapse
|
8
|
Motahari Z, Martinez-De Luna RI, Viczian AS, Zuber ME. Tbx3 represses bmp4 expression and, with Pax6, is required and sufficient for retina formation. Development 2016; 143:3560-3572. [PMID: 27578778 DOI: 10.1242/dev.130955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
Vertebrate eye formation begins in the anterior neural plate in the eye field. Seven eye field transcription factors (EFTFs) are expressed in eye field cells and when expressed together are sufficient to generate retina from pluripotent cells. The EFTF Tbx3 can regulate the expression of some EFTFs; however, its role in retina formation is unknown. Here, we show that Tbx3 represses bmp4 transcription and is required in the eye field for both neural induction and normal eye formation in Xenopus laevis Although sufficient for neural induction, Tbx3-expressing pluripotent cells only form retina in the context of the eye field. Unlike Tbx3, the neural inducer Noggin can generate retina both within and outside the eye field. We found that the neural and retina-inducing activity of Noggin requires Tbx3. Noggin, but not Tbx3, induces Pax6 and coexpression of Tbx3 and Pax6 is sufficient to determine pluripotent cells to a retinal lineage. Our results suggest that Tbx3 represses bmp4 expression and maintains eye field neural progenitors in a multipotent state; then, in combination with Pax6, Tbx3 causes eye field cells to form retina.
Collapse
Affiliation(s)
- Zahra Motahari
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Reyna I Martinez-De Luna
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andrea S Viczian
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael E Zuber
- The Center for Vision Research, Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY 13210, USA Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
9
|
Hilton C, Karpe F, Pinnick KE. Role of developmental transcription factors in white, brown and beige adipose tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:686-96. [PMID: 25668679 DOI: 10.1016/j.bbalip.2015.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
Abstract
In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, OUH Trust, Churchill Hospital, Oxford, UK
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
You L, Chen L, Pan L, Gu WS, Chen JY. Zinc finger protein 467 regulates Wnt signaling by modulating the expression of sclerostin in adipose derived stem cells. Biochem Biophys Res Commun 2014; 456:598-604. [PMID: 25490389 DOI: 10.1016/j.bbrc.2014.11.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 01/30/2023]
Abstract
Osteoporosis is a metabolic disease in which a disruption of the balance between bone formation by osteoblasts and bone resorption by osteoclasts leads to the progressive deterioration of bone density and quality. Tissue engineering approaches to the treatment of osteoporosis depend on the identification of factors that promote the differentiation of progenitor cells towards an osteoblastic phenotype. In the present study, we expanded on prior findings on the role of zinc finger protein 467 (Zfp467) in the osteoblastic differentiation of adipose-derived stem cells (ADSCs) and explored the underlying mechanisms. We showed that Zfp467 binds to and regulates the expression of the SOST gene, which encodes a secreted glycoprotein named sclerostin (Sost) that is expressed exclusively by osteocytes and functions as a negative regulator of bone formation through the modulation of Wnt signaling. Overexpression of Zfp467 in ADSCs inhibited Wnt signaling by promoting binding of Sost to the Wnt coreceptors LRP5/6 and disrupting Wnt induced Frizzled-LRP6 complex formation, and siRNA mediated Sost silencing reversed the inhibition of Wnt signaling by Zfp467 in ADSCs. Our results indicate that Zfp467 regulates the differentiation of ADSCs via a mechanism involving Sost-mediated inhibition of Wnt signaling, suggesting potential therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li You
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Lin Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ling Pan
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen-Sha Gu
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jin-Yu Chen
- Department of Endocrinology and Metabolism, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
11
|
Dai M, Wang Y, Fang L, Irwin DM, Zhu T, Zhang J, Zhang S, Wang Z. Differential expression of Meis2, Mab21l2 and Tbx3 during limb development associated with diversification of limb morphology in mammals. PLoS One 2014; 9:e106100. [PMID: 25166052 PMCID: PMC4148388 DOI: 10.1371/journal.pone.0106100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022] Open
Abstract
Bats are the only mammals capable of self-powered flight using wings. Differing from mouse or human limbs, four elongated digits within a broad wing membrane support the bat wing, and the foot of the bat has evolved a long calcar that spread the interfemoral membrane. Our recent mRNA sequencing (mRNA-Seq) study found unique expression patterns for genes at the 5' end of the Hoxd gene cluster and for Tbx3 that are associated with digit elongation and wing membrane growth in bats. In this study, we focused on two additional genes, Meis2 and Mab21l2, identified from the mRNA-Seq data. Using whole-mount in situ hybridization (WISH) we validated the mRNA-Seq results for differences in the expression patterns of Meis2 and Mab21l2 between bat and mouse limbs, and further characterize the timing and location of the expression of these two genes. These analyses suggest that Meis2 may function in wing membrane growth and Mab21l2 may have a role in AP and DV axial patterning. In addition, we found that Tbx3 is uniquely expressed in the unique calcar structure found in the bat hindlimb, suggesting a role for this gene in calcar growth and elongation. Moreover, analysis of the coding sequences for Meis2, Mab21l2 and Tbx3 showed that Meis2 and Mab21l2 have high sequence identity, consistent with the functions of genes being conserved, but that Tbx3 showed accelerated evolution in bats. However, evidence for positive selection in Tbx3 was not found, which would suggest that the function of this gene has not been changed. Together, our findings support the hypothesis that the modulation of the spatiotemporal expression patterns of multiple functional conserved genes control limb morphology and drive morphological change in the diversification of mammalian limbs.
Collapse
Affiliation(s)
- Mengyao Dai
- Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai, China
| | - Yao Wang
- Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai, China
| | - Lu Fang
- Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Tengteng Zhu
- Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai, China
| | - Junpeng Zhang
- Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai, China
| | - Zhe Wang
- Institute of Molecular Ecology and Evolution, East China Normal University, Shanghai, China
| |
Collapse
|
12
|
Du HF, Ou LP, Yang X, Song XD, Fan YR, Tan B, Luo CL, Wu XH. A new PKCα/β/TBX3/E-cadherin pathway is involved in PLCε-regulated invasion and migration in human bladder cancer cells. Cell Signal 2013; 26:580-93. [PMID: 24316392 DOI: 10.1016/j.cellsig.2013.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 11/25/2022]
Abstract
Although PLCε has been verified to enhance bladder cancer cell invasion, the signaling pathways responsible for this remain elusive. Protein kinase C (PKCα/β), which is involved in cancer development and progression, has been demonstrated to be activated by PLCε. However, the roles of PKCα/β in PLCε-mediated bladder carcinoma cell invasion and migration have not been clearly identified. In this study, to determine what role PKCα/β plays in PLCε-mediated bladder cancer cell invasion and migration, we silenced PLCε gene by adenovirus-shPLCε in T24 and BIU-87 cells and then revealed that it significantly inhibited cell migration and invasion. Further research indicated that cell bio-function of PLCε-regulated was related with PKCα/β activity. These in vitro findings were supported by data from bladder carcinoma patient samples. In 35 case bladder cancer tumor samples, PLCε-overexpressing tumors showed significantly higher positive rates of PKCα/β membrane immunohistochemistry staining than PLCε-low-expressing tumors. Mechanistically, study further showed that PLCε knockdown gene induced E-cadherin expression and decreased TBX3 expression, both of which were dependent on PKCα/β activity. In addition, we demonstrated that treatment cells with TBX3-specific shorting hairpin RNA (shRNA) up-regulated E-cadherin expression and inhibited cell invasion/migration. Moreover, in in vivo experiment, immunohistochemistry analysis of Ad-shPLCε-infected tumor tissue showed low expression levels of phospho-PKCα/β and TBX3 and high expression levels of E-cadherin compared with those of the control group. In summary, our findings uncover that PKCα/β is critical for PLCε-mediated cancer cell invasion and migration and provide valuable insights for current and future Ad-shPLCε and PKCα/β clinical trials.
Collapse
Affiliation(s)
- Hong Fei Du
- The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Ping Ou
- The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue Yang
- The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue Dong Song
- The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan Ru Fan
- The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bing Tan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chun Li Luo
- The Key Laboratory of Diagnostics Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Xiao Hou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Hutson JM, Southwell BR, Li R, Lie G, Ismail K, Harisis G, Chen N. The regulation of testicular descent and the effects of cryptorchidism. Endocr Rev 2013; 34:725-52. [PMID: 23666148 DOI: 10.1210/er.2012-1089] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first half of this review examines the boundary between endocrinology and embryonic development, with the aim of highlighting the way hormones and signaling systems regulate the complex morphological changes to enable the intra-abdominal fetal testes to reach the scrotum. The genitoinguinal ligament, or gubernaculum, first enlarges to hold the testis near the groin, and then it develops limb-bud-like properties and migrates across the pubic region to reach the scrotum. Recent advances show key roles for insulin-like hormone 3 in the first step, with androgen and the genitofemoral nerve involved in the second step. The mammary line may also be involved in initiating the migration. The key events in early postnatal germ cell development are then reviewed because there is mounting evidence for this to be crucial in preventing infertility and malignancy later in life. We review the recent advances in what is known about the etiology of cryptorchidism and summarize the syndromes where a specific molecular cause has been found. Finally, we cover the recent literature on timing of surgery, the issues around acquired cryptorchidism, and the limited role of hormone therapy. We conclude with some observations about the differences between animal models and baby boys with cryptorchidism.
Collapse
Affiliation(s)
- John M Hutson
- Urology Department, Royal Children's Hospital, Parkville 3052, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Takashima Y, Suzuki A. Regulation of organogenesis and stem cell properties by T-box transcription factors. Cell Mol Life Sci 2013; 70:3929-45. [PMID: 23479132 PMCID: PMC11113830 DOI: 10.1007/s00018-013-1305-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 12/28/2022]
Abstract
T-box transcription factors containing the common DNA-binding domain T-box contribute to the organization of multiple tissues in vertebrates and invertebrates. In mammals, 17 T-box genes are divided into five subfamilies depending on their amino acid homology. The proper distribution and expression of individual T-box transcription factors in different tissues enable regulation of the proliferation and differentiation of tissue-specific stem cells and progenitor cells in a suitable time schedule for tissue organization. Consequently, uncontrollable expressions of T-box genes induce abnormal tissue organization, and eventually cause various diseases with malformation and malfunction of tissues and organs. Furthermore, some T-box transcription factors are essential for maintaining embryonic stem cell pluripotency, improving the quality of induced pluripotent stem cells, and inducing cell-lineage conversion of differentiated cells. These lines of evidence indicate fundamental roles of T-box transcription factors in tissue organization and stem cell properties, and suggest that these transcription factors will be useful for developing therapeutic approaches in regenerative medicine.
Collapse
Affiliation(s)
- Yasuo Takashima
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
15
|
Darvin P, Joung YH, Yang YM. JAK2-STAT5B pathway and osteoblast differentiation. JAKSTAT 2013; 2:e24931. [PMID: 24470975 PMCID: PMC3894232 DOI: 10.4161/jkst.24931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Osteoblast differentiation is a critical step in the maintenance of bone homeostasis. Osteoblast differentiation is generally maintained by growth hormone (GH) and various other endocrine and autocrine/paracrine factors. JAK2-STAT5B pathway is a central axis in the mechanism of GH signaling. Similarly, the autocrine/paracrine signaling factor IGF-1 also mediates its effects through this pathway. Analysis on JAK2-STAT5B pathway showed its importance in the IGF-1/IGF-1R mediated regulation of gene expression and osteoblast differentiation. Persistent activation of STAT5B and inhibition of STAT5B degradation showed increased osteoblastic differentiation and STAT5B/Runx-2 activities. Conditional gene silencing studies showed the importance of the JAK2-STAT5B pathway in stimulation of other transcription factors and expression of various differentiation markers.
Collapse
Affiliation(s)
- Pramod Darvin
- Department of Pathology; School of Medicine; and Institute of Biomedical Science and Technology; Konkuk University; Seoul, Republic of Korea
| | - Youn Hee Joung
- Department of Pathology; School of Medicine; and Institute of Biomedical Science and Technology; Konkuk University; Seoul, Republic of Korea
| | - Young Mok Yang
- Department of Pathology; School of Medicine; and Institute of Biomedical Science and Technology; Konkuk University; Seoul, Republic of Korea
| |
Collapse
|
16
|
Boyd SC, Mijatov B, Pupo GM, Tran SL, Gowrishankar K, Shaw HM, Goding CR, Scolyer RA, Mann GJ, Kefford RF, Rizos H, Becker TM. Oncogenic B-RAF(V600E) signaling induces the T-Box3 transcriptional repressor to repress E-cadherin and enhance melanoma cell invasion. J Invest Dermatol 2012. [PMID: 23190890 PMCID: PMC3788590 DOI: 10.1038/jid.2012.421] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Approximately 50% of melanomas require oncogenic B-RAFV600E signaling for proliferation, survival and metastasis, and the use of highly selective B-RAF inhibitors has yielded remarkable, albeit short term, clinical responses. Re-activation of signaling downstream of B-RAF is frequently associated with acquired resistance to B-RAF inhibitors, and the identification of B-RAF targets may therefore provide new strategies for managing melanoma. In this report, we applied whole genome expression analyses to reveal that oncogenic B-RAFV600E regulates genes associated with epithelial-mesenchymal transition in normal cutaneous human melanocytes. Most prominent was the B-RAF-mediated transcriptional repression of E-cadherin, a keratinocyte-melanoma adhesion molecule whose loss is intimately associated with melanoma invasion and metastasis. Here we identify a link between oncogenic B-RAF, the transcriptional repressor Tbx3 and E-cadherin. We show that B-RAFV600E induces the expression of Tbx3, which potently represses E-cadherin expression in melanocytes and melanoma cells. Tbx3 expression is normally restricted to developmental embryonic tissues, promoting cell motility but is also aberrantly increased in various cancers and has been linked to tumor cell invasion and metastasis. We propose that this B-RAF/Tbx3/E-cadherin pathway plays a critical role in promoting the metastasis of B-RAF mutant melanomas.
Collapse
Affiliation(s)
- Suzanah C Boyd
- University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146:633-44. [PMID: 21854987 DOI: 10.1016/j.cell.2011.07.026] [Citation(s) in RCA: 1097] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 03/15/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022]
Abstract
Cancer cells within individual tumors often exist in distinct phenotypic states that differ in functional attributes. While cancer cell populations typically display distinctive equilibria in the proportion of cells in various states, the mechanisms by which this occurs are poorly understood. Here, we study the dynamics of phenotypic proportions in human breast cancer cell lines. We show that subpopulations of cells purified for a given phenotypic state return towards equilibrium proportions over time. These observations can be explained by a Markov model in which cells transition stochastically between states. A prediction of this model is that, given certain conditions, any subpopulation of cells will return to equilibrium phenotypic proportions over time. A second prediction is that breast cancer stem-like cells arise de novo from non-stem-like cells. These findings contribute to our understanding of cancer heterogeneity and reveal how stochasticity in single-cell behaviors promotes phenotypic equilibrium in populations of cancer cells.
Collapse
|
18
|
Alternative splicing of T-box transcription factor genes. Biochem Biophys Res Commun 2011; 412:513-7. [PMID: 21856288 DOI: 10.1016/j.bbrc.2011.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/04/2011] [Indexed: 01/28/2023]
Abstract
T-box (TBX) transcription factors are an ancient gene family with critical roles in embryogenesis. Currently, TBX3, TBX5, and TBX20 are TBX genes defined to have multiple protein isoforms created by alternative splicing and characterized by expression and functional studies. These proteins are important for development as mutations lead to severe developmental disorders in humans and mice. Cumulative studies suggest that alternative splicing of these genes can regulate TBX activities during multiple biological processes including cardiogenesis, limb development, and cancer mechanisms. This mini-review focuses on how alternative splicing adds complexity to transcriptional regulation of target genes controlled by TBX transcription factors.
Collapse
|
19
|
PMA-induced up-regulation of TBX3 is mediated by AP-1 and contributes to breast cancer cell migration. Biochem J 2011; 433:145-53. [PMID: 20942798 DOI: 10.1042/bj20100886] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The T-box transcription factor TBX3 provides an important link between embryonic development and cancer. TBX3 mediates limb, mammary gland and heart development and, in humans, mutations resulting in haplo-insufficiency of TBX3 lead to ulnar-mammary syndrome. Importantly, the de-regulation of TBX3 gene expression has been linked to several cancers, where it acts to suppress senescence and promotes proliferation and tumour invasion. Despite the negative impact of de-regulated TBX3 expression as seen by developmental defects and cancer, surprisingly little is known about the regulation of the TBX3 gene. In the present paper, we show that the phorbol ester PMA increases TBX3 protein and mRNA levels in a protein kinase C-dependent manner via the AP-1 (activator protein 1) transcription factors c-Jun and JunB. Furthermore, these AP-1 factors are shown to mediate the activation of the TBX3 gene by binding a non-consensus PMA-response element in the TBX3 promoter in vitro and in vivo. We also demonstrate that TBX3 contributes to the PMA-induced migration previously observed for the MCF-7 breast epithelium cancer cell line. Our present results reveal a previously unidentified pathway that up-regulates TBX3 expression and provides additional evidence that increased levels of TBX3 contribute to metastasis.
Collapse
|
20
|
Abstract
Increasing numbers of regenerative approaches now involve use of adult stem cells, like the bone marrow MSC or the adipose-derived ASC. With their ease of in vitro manipulation and successful tissue integration in vivo, the ASC makes an attractive candidate for gene delivery in vivo using viral-based gene therapy strategies. As such, this chapter describes methods for the transduction of human ASCs with two popular types of recombinant viruses: adenovirus and lentivirus.
Collapse
|
21
|
Li SC, Lin CY, Kuo TF, Lin YH, Chen CC, Lin WN, Chan WP. Chicken model of steroid-induced bone marrow adipogenesis using proteome analysis: a preliminary study. Proteome Sci 2010; 8:47. [PMID: 20840762 PMCID: PMC2949814 DOI: 10.1186/1477-5956-8-47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 09/14/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Steroid-induced adipogenesis increases fat-cell volume and pressure in bone marrow. This may be a contributing factor in some forms of osteonecrosis. In this observational study, we aimed to determine the protein expression relating to steroid-induced adipogenesis of femoral bone marrow with use of a chicken model. We compared the histologic features of the femoral marrow of eight methylprednisolone (MP)-treated chickens with those of three control chickens and assessed differential proteins with 2-dimensional gel electrophoresis and differential proteins were identified by MALDI-TOF MS. RESULTS One MP-induced chicken died of overdose anesthesia. Methylprednisolone-induced proliferation of adipose tissue and new bone formation were found on histologic examination. In our study, 13 proteins in the control and MP-induced groups were differently expressed and nine protein spots showed marked threefold downregulation after 19 weeks of MP treatment. These were serum amyloid P-component precursor, zinc finger protein 28, endothelial zinc finger protein 71, T-box transcription factor 3, cyclin-dependent kinase inhibitor 1, myosin 1D, dimethylaniline monooxygenase, and two uncharacterized proteins. CONCLUSIONS Proteomic profiling can be a useful dynamic approach for detecting protein expression in MP-induced adipogenesis of the femur in chickens.
Collapse
Affiliation(s)
- Sing Chung Li
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan, Republic of China
| | - Ching Yu Lin
- School of Medical Technology and Biotechnology, Taipei Medical University, Taipei 110, Taiwan, Republic of China
| | - Tzong Fu Kuo
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei 110, Taiwan, Republic of China
| | - Yun Ho Lin
- Department of Pathology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, Republic of China
| | - Chia Chun Chen
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, Republic of China
| | - Way Neng Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan, Republic of China
| | - Wing P Chan
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, Republic of China
- Department of Radiology, Taipei Medical University-Wan Fang Hospital, Taipei 116, Taiwan, Republic of China
| |
Collapse
|
22
|
Li G, Zhang XA, Zhang JF, Chan CY, Yew DTW, He ML, Lin MCM, Leung PC, Kung HF. Ethanol extract of Fructus Ligustri Lucidi promotes osteogenesis of mesenchymal stem cells. Phytother Res 2010; 24:571-6. [PMID: 19813230 DOI: 10.1002/ptr.2987] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fructus Ligustri Lucidi (FLL) has been used in traditional Chinese medicine for over 1000 years. The ethanol extract of FLL (EFLL) has been shown to be a potential candidate in the prevention and treatment of osteoporosis. The present study aimed to determine whether EFLL carries out the effect by promoting osteogenesis in mesenchymal stem cells (MSCs). The osteogenic differentiation of MSCs was evaluated by their alkaline phosphatase (ALP) activities and mineralization. Expression of genes was detected by RT-PCR. We found that EFLL significantly stimulated the ALP activities and shortened the time needed for the mineralization of MSCs during osteogenic differentiation. The expression of several osteoblast differentiation regulators was also upregulated by EFLL during this process. Our study demonstrated that the EFLL is capable of enhancing osteogenic differentiation of MSCs. It might be useful for treating diseases with inadequate bone formation, including osteoporosis.
Collapse
Affiliation(s)
- Guo Li
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Govoni K, Linares G, Chen ST, Pourteymoor S, Mohan S. T-box 3 negatively regulates osteoblast differentiation by inhibiting expression of osterix and runx2. J Cell Biochem 2009; 106:482-90. [PMID: 19115250 PMCID: PMC2915761 DOI: 10.1002/jcb.22035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
T-box (Tbx)3, a known transcriptional repressor, is a member of a family of transcription factors, which contain a highly homologous DNA binding domain known as the Tbx domain. Based on the knowledge that mutation of the Tbx3 gene results in limb malformation, Tbx3 regulates osteoblast proliferation and its expression increases during osteoblast differentiation, we predicted that Tbx3 is an important regulator of osteoblast cell functions. In this study, we evaluated the consequence of transgenic overexpression of Tbx3 on osteoblast differentiation. Retroviral overexpression increased Tbx3 expression >100-fold at the mRNA and protein level. Overexpression of Tbx3 blocked mineralized nodule formation (28 +/- 8 vs. 7 +/- 1%) in MC3T3-E1 cells. In support of these data, alkaline phosphatase (ALP) activity was reduced 33-70% (P < 0.05) in both MC3T3-E1 cells and primary calvaria osteoblasts overexpressing Tbx3. In contrast, Tbx3 overexpression did not alter ALP activity in bone marrow stromal cells. Tbx3 overexpression blocked the increase in expression of key osteoblast marker genes, ALP, bone sialoprotein, and osteocalcin that occurs during normal osteoblast differentiation, but had little or no effect on expression of proliferation genes p53 and Myc. In addition, Tbx3 overexpression abolished increased osterix and runx2 expression observed during normal osteoblast differentiation, but the change in Msx1 and Msx2 expression over time was similar between control and Tbx3 overexpressing cells. Interestingly, osterix and runx2, but not Msx1 and Msx2, contain Tbx binding site in the regulatory region. Based on these data and our previous findings, we conclude that Tbx3 promotes proliferation and suppresses differentiation of osteoblasts and may be involved in regulating expression of key transcription factors involved in osteoblast differentiation.
Collapse
Affiliation(s)
- K.E. Govoni
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, Loma Linda, CA 92357
| | - G.R. Linares
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, Loma Linda, CA 92357
- Department of Physiology, Loma Linda University, Loma Linda, CA 92354
| | - S-T. Chen
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, Loma Linda, CA 92357
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354
| | - S. Pourteymoor
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, Loma Linda, CA 92357
| | - S. Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, Loma Linda, CA 92357
- Department of Physiology, Loma Linda University, Loma Linda, CA 92354
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354
| |
Collapse
|