1
|
Agyapong ED, Pedriali G, Ramaccini D, Bouhamida E, Tremoli E, Giorgi C, Pinton P, Morciano G. Calcium signaling from sarcoplasmic reticulum and mitochondria contact sites in acute myocardial infarction. J Transl Med 2024; 22:552. [PMID: 38853272 PMCID: PMC11162575 DOI: 10.1186/s12967-024-05240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Acute myocardial infarction (AMI) is a serious condition that occurs when part of the heart is subjected to ischemia episodes, following partial or complete occlusion of the epicardial coronary arteries. The resulting damage to heart muscle cells have a significant impact on patient's health and quality of life. About that, recent research focused on the role of the sarcoplasmic reticulum (SR) and mitochondria in the physiopathology of AMI. Moreover, SR and mitochondria get in touch each other through multiple membrane contact sites giving rise to the subcellular region called mitochondria-associated membranes (MAMs). MAMs are essential for, but not limited to, bioenergetics and cell fate. Disruption of the architecture of these regions occurs during AMI although it is still unclear the cause-consequence connection and a complete overview of the pathological changes; for sure this concurs to further damage to heart muscle. The calcium ion (Ca2+) plays a pivotal role in the pathophysiology of AMI and its dynamic signaling between the SR and mitochondria holds significant importance. In this review, we tried to summarize and update the knowledge about the roles of these organelles in AMI from a Ca2+ signaling point of view. Accordingly, we also reported some possible cardioprotective targets which are directly or indirectly related at limiting the dysfunctions caused by the deregulation of the Ca2+ signaling.
Collapse
Affiliation(s)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | | | | | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| |
Collapse
|
2
|
Lin WL, Hsiao YW, Liu SH, Cheng WH, Tsai TY, Chou YH, Yang CCH, Kuo TBJ, Chen SA, Lo LW. Effects of low-density lipoprotein cholesterol on sleep apnea: Insights from a rat model of cardiovascular autonomic dysregulation. Sleep Med 2024; 115:76-82. [PMID: 38340526 DOI: 10.1016/j.sleep.2024.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION The levels of low-density lipoprotein (LDL) cholesterol in plasma are important risk factors for coronary heart disease. Several reports suggest that elevated plasma cholesterol is associated with cardiac arrhythmias. In a subsequent study investigating LDL cholesterol levels and the frequency of LDL cholesterol measurements, a positive correlation was observed between the severity of sleep apnea and visit-to-visit LDL cholesterol variability. Our objective was to assess the effects of hypercholesterolemia on cardiac autonomic activity, disordered sleep patterns, and increased incidence of arrhythmias in freely moving rats. METHODS Wireless transmission of polysomnographic recordings was performed in control and high cholesterol male rats during normal daytime sleep. Spectral analyses were conducted on the electroencephalogram and electromyogram (EMG) recordings to distinguish active waking, quiet sleep, and paradoxical sleep. Heart rate variability power spectrum analysis was used to measure cardiac autonomic activity. RESULTS The high cholesterol group exhibited a higher low-frequency (LF)/high-frequency (HF) power ratio during all sleep stages compared to the control group. Additionally, the frequency of sleep interruptions was increased in the high cholesterol group compared to the control group. CONCLUSIONS Our results show significant sleep fragmentation with sympathetic hyperactivity after exposure to high cholesterol. This indicates that high cholesterol may increase the risk of sleep apnea and poor sleep quality by disrupting autonomic homeostasis.
Collapse
Affiliation(s)
- Wei-Lun Lin
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiou Tung University, Taipei, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ya-Wen Hsiao
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiou Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiou Tung University, Taipei, Taiwan
| | - Tsung-Ying Tsai
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Hui Chou
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiou Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiou Tung University, Taipei, Taiwan; Taoyuan Psychiatric Center, Taoyuan Psychiatric Hospital, Taoyuan, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiou Tung University, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiou Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiou Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Colombe AS, Gerbaud P, Benitah JP, Pidoux G. Housekeeping Proteins Exhibit a High Level of Expression Variability Within Control Group and Between Ischemic Human Heart Biopsies. J Am Heart Assoc 2022; 11:e026292. [PMID: 36073642 DOI: 10.1161/jaha.122.026292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Human cardiac biopsies are widely used in clinical and fundamental research to decipher molecular events that characterize cardiac physiological and pathophysiological states. One of the main approaches relies on the analysis of semiquantitative immunoblots that reveals alterations in protein expression levels occurring in diseased hearts. To maintain semiquantitative results, expression level of target proteins must be standardized. The expression of HKP (housekeeping proteins) is commonly used to this purpose. Methods and Results We evaluated the stability of HKP expression (actin, β-tubulin, GAPDH, vinculin, and calsequestrin) and total protein staining within control (coefficient of variation) and comparatively with ischemic human heart biopsies (P value). All HKP exhibited a high level of intragroup (ie, actin, β-tubulin, and GAPDH) and/or intergroup variability (ie, GAPDH, vinculin, and calsequestrin). Among all, we found total protein staining to exhibit the highest degree of stability within and between groups, which makes this reference the best to study protein expression level in human biopsies from ischemic hearts and age-matched controls. In addition, we illustrated that using an inappropriate reference protein marker misleads interpretation on SERCA2 (sarco/endoplasmic reticulum Ca2+ ATPase) and cMyBPC (cardiac myosin binding protein-C) expression level after myocardial infarction. Conclusions These reemphasize the need to standardize the level of protein expression with total protein staining in comparative immunoblot studies on human samples from control and diseased hearts.
Collapse
Affiliation(s)
- Anne-Sophie Colombe
- INSERM, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay Châtenay-Malabry France
| | - Pascale Gerbaud
- INSERM, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay Châtenay-Malabry France
| | - Jean-Pierre Benitah
- INSERM, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay Châtenay-Malabry France
| | - Guillaume Pidoux
- INSERM, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay Châtenay-Malabry France
| |
Collapse
|
4
|
Zheng J, Dooge HC, Pérez-Hernández M, Zhao YT, Chen X, Hernandez JJ, Valdivia CR, Palomeque J, Rothenberg E, Delmar M, Valdivia HH, Alvarado FJ. Preserved cardiac performance and adrenergic response in a rabbit model with decreased ryanodine receptor 2 expression. J Mol Cell Cardiol 2022; 167:118-128. [PMID: 35413295 PMCID: PMC9610860 DOI: 10.1016/j.yjmcc.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.
Collapse
Affiliation(s)
- Jingjing Zheng
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Holly C Dooge
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marta Pérez-Hernández
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Yan-Ting Zhao
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Xi Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan J Hernandez
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Carmen R Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Eli Rothenberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
Lin WL, Lai CT, Yamada S, Liu SH, Cheng WH, Chou YH, Yang CC, Kuo TB, Chen SA, Lo LW. Effects of renal denervation on sleep apnea and arrhythmia in rats with myocardial infarction. Sleep Med 2022; 91:115-123. [DOI: 10.1016/j.sleep.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
|
6
|
Sutovska H, Miklovic M, Molcan L. Artificial light at night suppresses the expression of sarco/endoplasmic reticulum Ca 2+ -ATPase in the left ventricle of the heart in normotensive and hypertensive rats. Exp Physiol 2021; 106:1762-1771. [PMID: 34089548 DOI: 10.1113/ep089594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Artificial light at night decreases blood pressure and heart rate in rats. Are these changes in heart rate accompanied by changes in protein expression in the heart's left ventricle? What is the main finding and its importance? Five weeks of artificial light at night affected protein expression in the heart's left ventricle in normotensive and hypertensive rats. Artificial light at night decreased expression of the sarco/endoplasmic reticulum Ca2+ -ATPase, angiotensin II receptor type 1 and endothelin-1. ABSTRACT Artificial light at night (ALAN) affects the circadian rhythm of the heart rate in normotensive Wistar rats (WT) and spontaneously hypertensive rats (SHR) through the autonomic nervous system, which regulates the heart's activity through calcium handling, an important regulator in heart contractility. We analysed the expression of the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA2) and other selected regulatory proteins involved in the regulation of heart contractility, angiotensin II receptor type 1 (AT1 R), endothelin-1 (ET-1) and tyrosine hydroxylase (TH), in the left ventricle of the heart in WT and SHR after 2 and 5 weeks of ALAN with intensity 1-2 lx. Expression of SERCA2 was decreased in WT (control: 0.53 ± 0.07; ALAN: 0.46 ± 0.10) and SHR (control: 0.72 ± 0.18; ALAN: 0.56 ± 0.21) after 5 weeks of ALAN (P = 0.067). Expression of AT1 R was significantly decreased in WT (control: 0.51 ± 0.27; ALAN: 0.34 ± 0.20) and SHR (control: 0.38 ± 0.07; ALAN: 0.23 ± 0.09) after 2 weeks of ALAN (P = 0.028) and in SHR after 5 weeks of ALAN. Expression of ET-1 was decreased in WT (control: 0.51 ± 0.27; ALAN: 0.28 ± 0.12) and SHR (control: 0.54 ± 0.10; ALAN: 0.35 ± 0.23) after 5 weeks of ALAN (P = 0.015). ALAN did not affect the expression of TH in WT or SHR. In conclusion, ALAN suppressed the expression of SERCA2, AT1 R and ET-1, which are important for the regulation of heart contractility, in a strain-dependent pattern in both WT and SHR.
Collapse
Affiliation(s)
- Hana Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Matus Miklovic
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
Patel P, Karch J. Regulation of cell death in the cardiovascular system. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 353:153-209. [PMID: 32381175 DOI: 10.1016/bs.ircmb.2019.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult heart is a post-mitotic terminally differentiated organ; therefore, beyond development, cardiomyocyte cell death is maladaptive. Heart disease is the leading cause of death in the world and aberrant cardiomyocyte cell death is the underlying problem for most cardiovascular-related diseases and fatalities. In this chapter, we will discuss the different cell death mechanisms that engage during normal cardiac development, aging, and disease states. The most abundant loss of cardiomyocytes occurs during a myocardial infarction, when the blood supply to the heart is obstructed, and the affected myocardium succumbs to cell death. Originally, this form of cell death was considered to be unregulated; however, research from the last half a century clearly demonstrates that this form of cell death is multifaceted and employees various degrees of regulation. We will explore all of the cell death pathways that have been implicated in this disease state and the potential interplay between them. Beyond myocardial infarction, we also explore the role and mechanisms of cardiomyocyte cell death in heart failure, myocarditis, and chemotherapeutic-induced cardiotoxicity. Inhibition of cardiomyocyte cell death has extensive therapeutic potential that will increase the longevity and health of the human heart.
Collapse
Affiliation(s)
- Pooja Patel
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
8
|
Mzhelskaya MM, Klinnikova MG, Koldysheva EV, Lushnikova EL. Expression of Flk-1 and Cyclin D2 mRNA in the Myocardium of Rats with Doxorubicin-Induced Cardiomyopathy and after Treatment with Betulonic Acid Amide. Bull Exp Biol Med 2017; 163:809-813. [PMID: 29063324 DOI: 10.1007/s10517-017-3909-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 12/18/2022]
Abstract
The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.
Collapse
Affiliation(s)
- M M Mzhelskaya
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia.
| | - M G Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - E V Koldysheva
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| |
Collapse
|
9
|
Mesenchymal stem cell therapy associated with endurance exercise training: Effects on the structural and functional remodeling of infarcted rat hearts. J Mol Cell Cardiol 2016; 90:111-9. [DOI: 10.1016/j.yjmcc.2015.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
10
|
Chaturvedi P, Kalani A, Familtseva A, Kamat PK, Metreveli N, Tyagi SC. Cardiac tissue inhibitor of matrix metalloprotease 4 dictates cardiomyocyte contractility and differentiation of embryonic stem cells into cardiomyocytes: Road to therapy. Int J Cardiol 2015; 184:350-363. [PMID: 25745981 PMCID: PMC4417452 DOI: 10.1016/j.ijcard.2015.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/08/2015] [Accepted: 01/24/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND TIMP4 (Tissue Inhibitors of Matrix Metalloprotease 4), goes down in failing hearts and mice lacking TIMP4 show poor regeneration capacity after myocardial infarction (MI). This study is based on our previous observation that administration of cardiac inhibitor of metalloproteinase (~TIMP4) attenuates oxidative stress and remodeling in failing hearts. Therefore, we hypothesize that TIMP4 helps in cardiac regeneration by augmenting contractility and inducing the differentiation of cardiac progenitor cells into cardiomyocytes. METHODS To validate this hypothesis, we transfected mouse cardiomyocytes with TIMP4 and TIMP4-siRNA and performed contractility studies in the TIMP4 transfected cardiomyocytes as compared to siRNA-TIMP4 transfected cardiomyocytes. We evaluated the calcium channel gene serca2a (sarcoplasmic reticulum calcium ATPase2a) and mir122a which tightly regulates serca2a to explain the changes in contractility. We treated mouse embryonic stem cells with cardiac extract and cardiac extract minus TIMP4 (using TIMP4 monoclonal antibody) to examine the effect of TIMP4 on differentiation of cardiac progenitor cells. RESULTS Contractility was augmented in the TIMP4 transfected cardiomyocytes as compared to siRNA-TIMP4 transfected cardiomyocytes. There was elevated expression of serca2a in the TIMP4 transformed myocytes and down regulation of mir122a. The cells treated with cardiac extract containing TIMP4 showed cardiac phenotype in terms of Ckit+, GATA4+ and Nkx2.5 expression. CONCLUSION This is a novel report suggesting that TIMP4 augments contractility and induces differentiation of progenitor cells into cardiac phenotype. In view of the failure of MMP9 inhibitors for cardiac therapy, TIMP4 provides an alternative approach, being an indigenous molecule and a natural inhibitor of MMP9.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| | - Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Anastasia Familtseva
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Pradip Kumar Kamat
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Naira Metreveli
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| |
Collapse
|
11
|
Yuzhik EI, Lushnikova EL, Klinnikova MG, Pichigin VI, Nepomnyashchikh LM. Expression of ryanodine receptor mRNA and sarcoplasmic Ca²⁺-ATPase mRNA in the myocardium and intracellular reorganization of cardiomyocytes in dyslipidemia and during verapamil treatment. Bull Exp Biol Med 2015; 158:544-50. [PMID: 25705039 DOI: 10.1007/s10517-015-2804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 10/24/2022]
Abstract
In experiments on rats, atherogenic diet led to hypercholesterolemia, while addition of verapamil to the diet led to the development of hypertriglyceridemia in these animals. Dyslipidemia induced significant changes in the cardiomyocyte ultrastructure (lytic changes in myofibrils and sarcoplasmic matrix and aggravation of autophagocytosis) that were most pronounced after addition of mercazolyl alone to the diet. After 30-day atherogenic diet, we observed a decrease in the relative content of RyR2 mRNA (by 67-73%, p<0.01) and SERCA2a mRNA (by 75-91%, p<0.01) in the myocardium. In 64 days these parameters remained reduced: by 64-72% (p<0.05) and 54-62% (p<0.05), respectively. Verapamil treatment reduced the severity and number of lytic lesions in cardiomyocytes, induced considerable glycogen accumulation in the sarcoplasm and its sequestration, promoted normalization, and prevented pronounced decrease of the relative RyR2 mRNA and SERCA2a mRNA in rat myocardium.
Collapse
Affiliation(s)
- E I Yuzhik
- Research Institute of Regional Pathology and Pathomorphology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia,
| | | | | | | | | |
Collapse
|
12
|
Abstract
MicroRNAs (miRNAs) are emerging as key control molecules in the regulation of gene expression, and their role in heart disease is becoming increasingly evident. Given the critical role of Ca
2+
handling and signaling proteins in the maintenance of cardiac function, the targeting of such proteins by miRNAs would be expected to have important consequences. miRNAs have indeed been shown to control the expression of genes encoding important Ca
2+
handling and signaling proteins, and are themselves regulated by Ca
2+
-dependent processes. Ca
2+
-related miRNAs have been found to be significant pathophysiological contributors in conditions like myocardial ischemic injury, cardiac hypertrophy, heart failure, ventricular arrhythmogenesis, and atrial fibrillation. This review is a comprehensive analysis of the present knowledge concerning miRNA regulation of Ca
2+
handling processes, the participation of Ca
2+
-regulating miRNAs in the evolution of heart disease, the mutual relationship between Ca
2+
signaling and miRNAs in the control of cardiac function, and the potential value of miRNA-control of Ca
2+
handling as a therapeutic target.
Collapse
Affiliation(s)
- Masahide Harada
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (M.H., X.L., S.N.); Department of Cardiology, Hamamatsu Medical Center, Hamamatsu, Japan (M.H.); Cardiovascular Research Institute and Department of Pharmacology, Harbin Medical University, Harbin, People’s Republic of China (X.L.; B.Y.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (T.M.); and Institute of Pharmacology, Faculty
| | - Xiaobin Luo
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (M.H., X.L., S.N.); Department of Cardiology, Hamamatsu Medical Center, Hamamatsu, Japan (M.H.); Cardiovascular Research Institute and Department of Pharmacology, Harbin Medical University, Harbin, People’s Republic of China (X.L.; B.Y.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (T.M.); and Institute of Pharmacology, Faculty
| | - Toyoaki Murohara
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (M.H., X.L., S.N.); Department of Cardiology, Hamamatsu Medical Center, Hamamatsu, Japan (M.H.); Cardiovascular Research Institute and Department of Pharmacology, Harbin Medical University, Harbin, People’s Republic of China (X.L.; B.Y.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (T.M.); and Institute of Pharmacology, Faculty
| | - Baofeng Yang
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (M.H., X.L., S.N.); Department of Cardiology, Hamamatsu Medical Center, Hamamatsu, Japan (M.H.); Cardiovascular Research Institute and Department of Pharmacology, Harbin Medical University, Harbin, People’s Republic of China (X.L.; B.Y.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (T.M.); and Institute of Pharmacology, Faculty
| | - Dobromir Dobrev
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (M.H., X.L., S.N.); Department of Cardiology, Hamamatsu Medical Center, Hamamatsu, Japan (M.H.); Cardiovascular Research Institute and Department of Pharmacology, Harbin Medical University, Harbin, People’s Republic of China (X.L.; B.Y.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (T.M.); and Institute of Pharmacology, Faculty
| | - Stanley Nattel
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (M.H., X.L., S.N.); Department of Cardiology, Hamamatsu Medical Center, Hamamatsu, Japan (M.H.); Cardiovascular Research Institute and Department of Pharmacology, Harbin Medical University, Harbin, People’s Republic of China (X.L.; B.Y.); Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan (T.M.); and Institute of Pharmacology, Faculty
| |
Collapse
|
13
|
Liu AH, Bao YM, Wang XY, Zhang ZX. Cardio-Protection by Ginkgo biloba Extract 50 in Rats with Acute Myocardial Infarction is Related to Na+–Ca2+ Exchanger. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:789-800. [DOI: 10.1142/s0192415x13500535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ginkgo biloba has been used for medical purposes for centuries in traditional Chinese medicine. Ginkgo biloba extract 50 (GBE50) is a new standardized GBE product that matches the standardized German product as EGb761. This paper is aimed at studying the cardio-protection effects of GBE50 Salvia miltiorrhiza on myocardial function, area at risk, myocardial ultra-structure, and expression of calcium handling proteins in rat ischemic myocardium. Myocardium ischemia was induced by the left anterior descending (LAD) coronary artery occlusion and myocardial function was recorded by a transducer advanced into the left ventricle on a computer system. In vitro myocardial infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) and Evans blue staining of heart sections. Morphological change was evaluated by electric microscopy and Western blotting was used for protein expression. Hemodynamic experiments in vivo showed that postischemic cardiac contractile function was reduced in ischemic rats. Salvia miltiorrhiza (7.5 g/kg/d×7) and Ginkgo biloba extract 50 (GBE50) (100 mg/kg/d×7) improved post-schemic cardiac diastolic dysfunction while not affecting the systolic function. In hearts of GBE50 group and Salvia miltiorrhiza (SM) group, the area at risk was significantly reduced and myocardial structure was better-preserved. Moreover, Na +– Ca 2+ exchanger (NCX) expression increase and sarcoplasmic reticulum Ca 2+– ATPase 2 (SERCA2), LTCC, and ryanodine receptor 2 (RyR2) expression decreases were smaller than those in ischemia group. There was a significant difference between the GBE50 and ischemia group in NCX expression. GBE50 could improve recovery in contractile function and prevent myocardium from ischemia damage, which may be caused by attenuating the abnormal expression of NCX.
Collapse
Affiliation(s)
- Ai-Hua Liu
- Department of Physiology, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Min Bao
- Department of Physiology, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing-Yu Wang
- Department of Physiology, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Xiong Zhang
- Department of Physiology, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Boštjančič E, Zidar N, Glavač D. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis. BMC Genomics 2012; 13:552. [PMID: 23066896 PMCID: PMC3532181 DOI: 10.1186/1471-2164-13-552] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 09/13/2012] [Indexed: 01/19/2023] Open
Abstract
Background Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. Results The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Conclusion Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.
Collapse
Affiliation(s)
- Emanuela Boštjančič
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, Ljubljana, Slovenia
| | | | | |
Collapse
|
15
|
Xin H, Gu M, Wang WW, Huang SY, Li FP, Cai H, Zhu YZ, Zhang XM. Effects of Leonurine on L-Type Calcium Channel in Rat Ventricular Myocytes. Biol Pharm Bull 2012; 35:1249-56. [DOI: 10.1248/bpb.b12-00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Ming Gu
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Wen Wei Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University
| | - Shi Ying Huang
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Fang Ping Li
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Hui Cai
- Renal Division, Department of Medicine, School of Medicine, Emory University
- Renal Section, Atlanta Veteran Administration Medical Center
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Xue Mei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University
| |
Collapse
|
16
|
Mill JG, Stefanon I, dos Santos L, Baldo MP. Remodeling in the ischemic heart: the stepwise progression for heart failure. Braz J Med Biol Res 2011; 44:890-8. [PMID: 21829898 DOI: 10.1590/s0100-879x2011007500096] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 07/26/2011] [Indexed: 01/08/2023] Open
Abstract
Coronary artery disease is the leading cause of death in the developed world and in developing countries. Acute mortality from acute myocardial infarction (MI) has decreased in the last decades. However, the incidence of heart failure (HF) in patients with healed infarcted areas is increasing. Therefore, HF prevention is a major challenge to the health system in order to reduce healthcare costs and to provide a better quality of life. Animal models of ischemia and infarction have been essential in providing precise information regarding cardiac remodeling. Several of these changes are maladaptive, and they progressively lead to ventricular dilatation and predispose to the development of arrhythmias, HF and death. These events depend on cell death due to necrosis and apoptosis and on activation of the inflammatory response soon after MI. Systemic and local neurohumoral activation has also been associated with maladaptive cardiac remodeling, predisposing to HF. In this review, we provide a timely description of the cardiovascular alterations that occur after MI at the cellular, neurohumoral and electrical level and discuss the repercussions of these alterations on electrical, mechanical and structural dysfunction of the heart. We also identify several areas where insufficient knowledge limits the adoption of better strategies to prevent HF development in chronically infarcted individuals.
Collapse
Affiliation(s)
- J G Mill
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | | | | | | |
Collapse
|
17
|
Floré V, Claus P, Antoons G, Oosterhoff P, Holemans P, Vos MA, Sipido KR, Willems R. Microvolt T-wave alternans and beat-to-beat variability of repolarization during early postischemic remodeling in a pig heart. Heart Rhythm 2011; 8:1050-7. [DOI: 10.1016/j.hrthm.2011.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|
18
|
Yildiz A, Yildiz S, Cece H. Papillary muscle late enhancement on MRI. Int J Cardiol 2011; 146:112-3. [PMID: 20965589 DOI: 10.1016/j.ijcard.2010.09.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/26/2010] [Indexed: 10/18/2022]
|
19
|
Mustonen E, Säkkinen H, Tokola H, Isopoussu E, Aro J, Leskinen H, Ruskoaho H, Rysä J. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 during cardiac remodelling in rats. Acta Physiol (Oxf) 2010; 199:11-22. [PMID: 20082609 DOI: 10.1111/j.1748-1716.2010.02080.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Accumulating evidence supports the concept that proinflammatory cytokines play an essential role in the failing heart. We examined the concomitant tumour necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 expression in myocytes in vitro as well as in vivo in cardiac remodelling. METHODS We assessed TWEAK and its receptor Fn14 expression in response to angiotensin (Ang) II, myocardial infarction (MI) as well as to local adenovirus-mediated p38 gene transfer in vivo. The effect of various hypertrophic factors and mechanical stretch was studied in neonatal rat ventricular myocyte cell culture. RESULTS Ang II increased Fn14 levels from 6 h to 2 weeks, the greatest increase in mRNA levels being observed at 6 h (6.3-fold, P < 0.001) and protein levels at 12 h (4.9-fold, P < 0.01). TWEAK mRNA and protein levels remained almost unchanged during Ang II infusion. Likewise, a rapid and sustained elevation of Fn14 mRNA and protein levels in the left ventricle was observed after experimental MI. Moreover, local p38 gene transfer increased Fn14 mRNA and protein but not TWEAK levels. Fn14 immunoreactive cells were mainly proliferating non-myocytes in the inflammation area while TWEAK immunoreactivity localized to cardiomyocytes and endothelial cells of the coronary arteries. Hypertrophic agonists and lipopolysaccharide increased Fn14 but not TWEAK gene expression in neonatal rat myocytes, while mechanical stretch upregulated Fn14 and downregulated TWEAK gene expression. CONCLUSIONS In conclusion, the cardiac TWEAK/Fn14 pathway is modified in response to myocardial injury, inflammation and pressure overload. Furthermore, our findings underscore the importance of Fn14 as a mediator of TWEAK/Fn14 signalling in the heart and a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- E Mustonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, Biocenter Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Talukder MH, Zweier JL, Periasamy M. Targeting calcium transport in ischaemic heart disease. Cardiovasc Res 2009; 84:345-52. [PMID: 19640931 PMCID: PMC2777954 DOI: 10.1093/cvr/cvp264] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 01/14/2023] Open
Abstract
Ischaemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. While timely reperfusion of acutely ischaemic myocardium is essential for myocardial salvage, it leads to a unique type of injury known as 'myocardial ischaemia/reperfusion (I/R) injury'. Growing evidence suggests that a defect in myocardial Ca(2+) transport system with cytosolic Ca(2+) overload is a major contributor to myocardial I/R injury. Progress in molecular genetics and medicine in past years has clearly demonstrated that modulation of Ca(2+) handling pathways in IHD could be cardioprotective. The potential benefits of these strategies in limiting I/R injury are vast, and the time is right for challenging in vivo systemic work both at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- M.A. Hassan Talukder
- Davis Heart and Lung Institute and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jay L. Zweier
- Davis Heart and Lung Institute and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Davis Heart and Lung Institute and The Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Blayney LM, Lai FA. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol Ther 2009; 123:151-77. [PMID: 19345240 PMCID: PMC2704947 DOI: 10.1016/j.pharmthera.2009.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 12/25/2022]
Abstract
The cardiac ryanodine receptor-Ca2+ release channel (RyR2) is an essential sarcoplasmic reticulum (SR) transmembrane protein that plays a central role in excitation–contraction coupling (ECC) in cardiomyocytes. Aberrant spontaneous, diastolic Ca2+ leak from the SR due to dysfunctional RyR2 contributes to the formation of delayed after-depolarisations, which are thought to underlie the fatal arrhythmia that occurs in both heart failure (HF) and in catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is an inherited disorder associated with mutations in either the RyR2 or a SR luminal protein, calsequestrin. RyR2 shows normal function at rest in CPVT but the RyR2 dysfunction is unmasked by physical exercise or emotional stress, suggesting abnormal RyR2 activation as an underlying mechanism. Several potential mechanisms have been advanced to explain the dysfunctional RyR2 observed in HF and CPVT, including enhanced RyR2 phosphorylation status, altered RyR2 regulation at luminal/cytoplasmic sites and perturbed RyR2 intra/inter-molecular interactions. This review considers RyR2 dysfunction in the context of the structural and functional modulation of the channel, and potential therapeutic strategies to stabilise RyR2 function in cardiac pathology.
Collapse
Affiliation(s)
- Lynda M Blayney
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF144XN, UK.
| | | |
Collapse
|
22
|
Sallinen P, Mänttäri S, Leskinen H, Vakkuri O, Ruskoaho H, Saarela S. Long-term postinfarction melatonin administration alters the expression of DHPR, RyR2, SERCA2, and MT2 and elevates the ANP level in the rat left ventricle. J Pineal Res 2008; 45:61-9. [PMID: 18284551 DOI: 10.1111/j.1600-079x.2008.00556.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effect of 2 wk continuous postinfarction subcutaneous melatonin supply on the expression of the rat left ventricular (LV) dihydropyridine receptor (DHPR), ryanodine receptor (RyR(2)), and sarco-endoplasmic reticulum Ca(2+)-ATPase2 (SERCA2), as they are fundamental proteins in cardiac contractility. The levels of plasma and LV atrial (ANP) and brain natriuretic peptide and melatonin were also measured, as was the expression of LV MT(1) and MT(2) receptors and pineal arylalkylamine N-acetyltransferase. Myocardial infarction (MI) was induced by ligation of the left anterior descending coronary artery and vehicle or melatonin (4.5 mg/kg per day) was administered by subcutaneous osmotic pumps. Echocardiography, real-time quantitative reverse transcription-polymerase chain reaction, and western blotting were used to analyze the samples. Echocardiography revealed that MI induced serious systolic LV dysfunction. The expression of DHPR, RyR(2), and SERCA2 mRNAs was significantly lower in the LVs of melatonin-treated MI rats compared with vehicle-treated rats (P < 0.01 for DHPR and P < 0.05 for RyR(2) and SERCA2). Melatonin also elevated the amount of LV MT(2) receptors to 1.9-fold (P < 0.05) and the concentration of LV ANP to over fivefold (P < 0.05) compared with vehicle rats after MI. Therefore, the results suggest that melatonin may influence the cardiac contractility after MI by regulating the expression of DHPR, RyR(2), and SERCA2, and melatonin receptors, particularly MT(2)s, might contribute to the postinfarction cardioprotective actions of melatonin. Furthermore, the finding of the relationship between melatonin and ANP suggests a novel mechanism for melatonin in protecting the heart after MI.
Collapse
|